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Abstract

With the vast amount of data available in today’s world, partic-
ularly on the web, it is common to find conflicting information from
different sources. Given an input consisting of conflicting claims
from multiple sources of unknown trustworthiness and reliability,
truth discovery algorithms aim to evaluate which claims should be
believed and which sources should be trusted. The evaluations of
trust and belief should cohere with one another, so that a claim re-
ceives a high belief ranking if it is backed up by trustworthy sources
and vice versa.

This project investigates truth discovery from practical and the-
oretical perspectives. On the practical side, a number of algorithms
from the literature are implemented in software and analysed. On
the theoretical side, a formal framework is developed to study truth
discovery from a general point of view, allowing results to be proved
and comparisons made between truth discovery and related areas
in the literature. Desirable properties of truth discovery algorithms
are defined in the framework, and we consider whether they are
satisfied by a particular real-world algorithm, Sums.
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Chapter 1

Introduction

There is an increasing amount of data available in today’s world, particu-
larly from the vast number of pages on the web, user-submitted content
on social media platforms and blogs, and sensor data from scientific in-
struments. Data can be found in many different formats, from structured
datasets to natural language articles, and from many disparate sources,
e.g. news outlets, scientific institutions, and members of the public.

With this abundance of data, it is common to find information about a
single object from multiple sources. An inherent problem faced when us-
ing such data is that different sources may provide conflicting information
for the same object.

Conflicts have a variety of causes, including out of date information,
poor quality data sources, errors in information extraction (when parsing
natural language text, for example), and deliberate spread of misinforma-
tion. When it comes to finding information about an object with conflict-
ing reports, the question is this: which information should we accept as
correct?

Truth discovery has emerged as a topic aiming to tackle this problem
of determining what to believe by considering also the trustworthiness of
sources. A main principle in many approaches is that believable claims are
those that are made by trustworthy sources, and that trustworthy sources
generally make believable claims.

1



CHAPTER 1. INTRODUCTION 2

This project has both practical and theoretical components. On the
practical side, we develop a robust software framework in Python for
truth discovery, which supports running truth discovery algorithms on
real-world datasets and evaluating their performance. A few popular al-
gorithms from the literature are implemented, although the framework
aims to be easily extendible, well-documented and well-tested so as to
allow more algorithms and features to be implemented in the future. The
framework will provide a uniform interface for users and researchers in
truth discovery to run different algorithms on datasets, and compare be-
haviour between algorithms. Additionally, it could be used to aid develop-
ment of new algorithms by evaluating performance against a number of
existing algorithms. To demonstrate its capabilities, some basic analysis
and evaluation of the implemented algorithms is performed.

For the theoretical component, we define a formal mathematical frame-
work for truth discovery, highlighting parallels with other areas in the lit-
erature, especially the theory of voting in social choice [41]. Following
the axiomatic approach used in social choice, we look for axioms (de-
sirable properties) of truth discovery algorithms expressed in the formal
framework, and consider which axioms are satisfied by a particular algo-
rithm, namely Sums [27]. As well as providing some immediate results,
this provides foundations for further theoretical work on truth discovery.



Chapter 2

Background

The fundamental problem of truth discovery is to resolve conflicts in a set
of claims from different sources. A näıve approach is to apply a majority
vote, where the claim made by the largest number of sources is accepted.
Unfortunately, this is prone to yield poor results when the sources are
not all equally trustworthy. For example, the study in [31] found that
false information on Twitter is shared more quickly and more widely than
true information. Applying a majority vote in the Twittersphere would
therefore, in many cases, select the false information as correct.

The problem with the majority vote is that all sources are treated iden-
tically: a claim from one source carries as much weight as a claim from
any other. This is contrary to how we judge the veracity of statements
in everyday life, where claims from trusted colleagues have considerably
more weight that claims from unknown persons (and especially people
known to be untrustworthy). Trust can therefore be a valuable tool in re-
solving conflicting information, since one expects that trustworthy sources
are more likely to make accurate claims than untrustworthy sources are.

Truth discovery therefore has two components: determining trust and
belief in sources and claims, and resolving conflicts in data. These are
tightly linked, since the trust evaluation is based on the claims in the
input data, and the claims to accept are based on the trust evaluation.

Presently we outline related areas in the literature that deal with re-

3



CHAPTER 2. BACKGROUND 4

solving conflicts and trust analysis, before providing some background on
truth discovery itself. Then we review existing work relevant to the prac-
tical and theoretical components of the project.

2.1 Related Areas

2.1.1 Resolving Conflicts in Data

There are numerous areas in the existing literature that deal with re-
solving conflicts in data. In data mining, data fusion considers aggre-
gating data from different sources into a single representation. Various
approaches have been suggested (see [8] for a review): for example, tak-
ing a majority vote (as discussed above), taking the most recent value as
correct, or ignoring objects entirely when a conflict exists.

In collective annotation [17], multiple individuals assign labels (an-
notations) to objects, which are to be aggregated into a single collective
annotation. Different individuals may not agree on the appropriate la-
bels for a given object; aggregation functions consider how to obtain the
collective annotation given these conflicts.

Belief revision [28] is set out in a logical framework, and considers
how to update a knowledge base upon receiving new information that
could cause the knowledge base to be inconsistent.

Argumentation theory [7] takes an abstract view and considers a set
of ‘arguments’ which conflict with each other (known as ‘attacking’). The
structure of the arguments is abstracted away, and only the network of
which arguments attack each other is considered. The aim is then to find
sets of arguments that are acceptable and consistent.

In a more general sense, social choice also deals with conflicts in data.
Here voters express preferences for a number of ‘alternatives’ (e.g. candi-
dates for an election), and a social ordering of the alternatives is sought
that reflects the will of the voters. Difficulties may arise when there is no
consensus among the voters – e.g. one voter’s favourite outcome could be
another’s least favourite. Although the notion of fairness present here is
not applicable to truth discovery, the issue of conflicts in the preferences
of voters is relevant.
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2.1.2 Trust Analysis

Trust has been studied in many different domains for different applica-
tions (see [24] for a survey). In the social sciences and economics, trust
between humans has been considered for the effects on economic trans-
actions. E-commerce sites such as eBay use the concept of trust and repu-
tation of sellers to inform buyers.

In wireless sensing, P2P networks and ad-hoc mobile networks, nodes
are required to behave cooperatively for the network to function. Various
approaches have been suggested for analysing the trust of nodes in these
scenarios (e.g. see section 4.4 in [24]) to mitigate the effects of misbe-
haviour, e.g. due to hardware problems or malicious interference from an
adversary.

It should be noted that some of these approaches to evaluating trust
compute ‘local’ measures of trust from the perspective of a particular
node. For example, a sensor in a network may evaluate the trust of its
neighbours based on its interactions with them. The trust assigned to a
given node may therefore vary as it is evaluated from different perspec-
tives. This is not the case with truth discovery, where we seek an objective
‘global’ notion of trust in sources based only on the claims made.

Other works do not aim to compute trust, but instead use trust rela-
tionships between ‘agents’ in a multi-agent system for some purpose. One
example is trust-based recommendation systems [5], where an agent is
given a recommendation for an item of interest based on the recommen-
dations of the agents it trusts. Other examples include personalised rank-
ing systems [2], trust-based argumentation [29] and trust-based belief
revision [9].

The trust considered here is again from the perspective of a given
agent. Nevertheless ideas from these areas still may be relevant to truth
discovery.

From a theoretical point of view, Marsh [23] provides a formal model
for trust in multi-agent systems.

2.2 Truth Discovery Background

In the preceding sections truth discovery has been discussed only infor-
mally. Here we outline more precisely the main concepts in the basic
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form of truth discovery, and discuss the various extensions to this basic
form that have been addressed in the literature. More information can be
found in survey papers on truth discovery methods [15, 21].

A source is an entity that provides (or claims) information, called facts,
about objects.1 A source may claim at most one fact for a given object.
Different sources may provide different facts for the same object; a fact
need not be ‘true’. It is often assumed that for each object there is a unique
true fact. In the basic form of truth discovery, the nature of the facts is
irrelevant, and they are treated as categorical values.2

A truth discovery algorithm takes the sources, facts, objects and the
facts claimed by each source as its input, and outputs a measure of the
trustworthiness of sources and the believability of facts. In an application
of truth discovery for finding true facts, the fact determined to be most
believable for a given object is taken to be the truth.

The precise definitions of input and output vary across the popular
truth discovery literature. Definitions of input are generally compatible
with each other, in the sense that they can be restated in terms of sources,
objects and facts (as above) without changing the essence of the approach.

For example, in Sums, Average·Log, Investment and PooledInvestment
[27] there is no concept of objects, but instead of mutual exclusion sets of
facts which cannot simultaneously be true. However the mutual exclusion
sets themselves can be seen as the objects linking related facts together.

Cosine, 2-Estimates and 3-Estimates [14] also have no concept of ob-
jects, and sources may make negative claims where they state a fact is
false. However one may view the ‘facts’ (in the sense of [14]) as objects,
and ‘true’ and ‘false’ as the only two facts associated with each object.

The form of the output varies more widely. The treatment of sources
is generally the same: each source is assigned a trust score, (usually a
number in [0, 1]) with higher scores indicating more trustworthy sources.
Differences appear for the treatment of facts, however. The two main
ideas are to assign each fact a belief score [27, 35, 36, 37], or to select
a single ‘true’ fact for each object [34, 38, 40]. Another view, taken in
[22] for example, is to produce a single value for each object to represent

1Note that the terminology is not uniform across the literature; e.g. the survey in
[15] refers to sources as ‘providers’, and the facts in [27] are referred to as ‘claims’ (i.e.
the word ‘claim’ is used as a noun, whereas we use it as a verb).

2Some approaches instead make use of the specific data types of the facts in their
calculations (e.g. [22]).
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the true fact, but where the true value may not have been claimed by any
sources (for example, a weighted average could be applied when facts are
numeric values, and could lead to this situation).

Note that selecting a single fact for each object can be seen as a special
case of assigning each fact a score; e.g. the true facts receive a score of 1
and all others receive 0.

In practise, most algorithms operate iteratively, computing trust and
belief scores (or finding ‘true’ facts) until convergence or some stopping
criterion is satisfied. For algorithms that assign trust and belief scores,
facts are first assigned initial belief scores. At each iteration, the trust
scores for sources are updated based on the current belief scores for the
facts they claim; then the belief scores are updated based on the current
trust scores for the sources. This mutual dependence of trust and belief
scores is hoped to encode the idea that trustworthy sources are ones that
claim believable facts, and believable facts are those claimed by trustwor-
thy sources.

This basic formulation is a simple representation of the real world, and
a number of extensions have been addressed to deal with more complex
situations. Some approaches extend the basic model by requiring more
information in the input (e.g. a set of ‘ground truths’ for semi-supervised
truth discovery), whereas others keep the same basic input but consider
more nuanced issues (e.g considering copying amongst sources). Exten-
sions include: implications between facts [35]; heterogeneous data [22];
correlations between objects [34]; hardness of facts [14]; incorporating
prior domain knowledge [27]; sparsity in claims [37]; semi-supervised
truth discovery [36]; copying between sources [11]; time-varying truth
[11]; and streaming data [39].

2.3 Existing Work

2.3.1 Software Implementations

Due to the wide range of domains in which truth discovery may be applied
and the variety of approaches and additional considerations beyond the
basic model (some of which are domain specific), there is not likely to be
a single algorithm that is best suited for all applications.
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Instead, for a given problem it is necessary to try several algorithms,
or even tailor a bespoke one, to achieve the best results. Note that even
evaluation may be domain specific: run time and memory efficiency may
be critical in some cases (e.g. when dealing with large volumes of data in
a scenario where real-time results are desired), whereas some applications
may be insensitive to long run times but require precise accuracy.3

For this reason, there is a need for an openly available and extendible
software framework for truth discovery, which allows different algorithms
to be evaluated and compared in a uniform environment. When faced
with a particular truth discovery problem, users may then run many al-
gorithms on their data without additional effort for each algorithm. An
easily extendible framework will allow them to define their own metrics
for evaluation that are suitable for the dataset in question, and even mod-
ify algorithms to suit the type of data if required.

Despite the wide interest in truth discovery in research papers, there
are few open source software implementations. One such implementa-
tion is spectrum4, available on GitHub. This library implements some al-
gorithms from the literature, but lacks proper documentation, does not
provide a uniform interface for getting results across algorithms, and does
not support evaluating results for datasets for which some true values are
already known. It also does not provide fine-tuned control for the running
of algorithms, such as the threshold for determining when trust and belief
scores have converged.

Another open source library is DAFNA-EA5, which is the implementa-
tion behind the comparative study in [18]. Whilst extensive in the number
of algorithms implemented, its capability for evaluating performance and
generation of synthetic data, it lacks documentation to allow its code to
be extended (i.e. for users to define their own evaluation metrics or al-
gorithms), and is not geared towards real-world applications of truth dis-
covery. Additionally, a web interface is reportedly available, which may
improve accessibility for non-technical users, but is not operational at the
time of writing.

Other truth discovery implementations are available on GitHub and
elsewhere,6 but these are generally repositories containing code used in

3 The meaning of ‘accuracy’ for truth discovery algorithms will be discussed in section
3.1.

4https://github.com/totucuong/spectrum
5https://github.com/daqcri/DAFNA-EA

https://github.com/totucuong/spectrum
https://github.com/daqcri/DAFNA-EA
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the production of a research paper rather than general purpose libraries.
To produce a software framework for truth discovery that achieves the

goals stated above and which addresses the deficiencies of the existing
frameworks, this project will implement a selection of algorithms from
the literature in a uniform way with a focus on extendability, which will
include comprehensive documentation of both the code and the user in-
terface. Fine-tuned control of parameters for initialising and running al-
gorithms will be available. It will also identify standard metrics for evalu-
ating algorithms (including generation of synthetic datasets), and provide
means of comparing algorithms with respect to those metrics.

2.3.2 Theoretical Work

Many of the truth discovery algorithms in the literature are supported
by some form of theoretical analysis. For example, the survey in [15]
analyses the time complexity of various algorithms, the convergence of
semi-supervised truth finder is proved in [36], and the approach in [33] is
proven to converge to find the true facts under assumptions on the dis-
tributions of source reliability. In [32], a probabilistic framework termed
Unified Truth Discovery is developed, and theoretical properties of this
framework are proved under certain mild assumptions.

A limitation of this kind of theoretical analysis is that the results apply
only to a single algorithm or class of algorithm. These results, whilst
important in their own right, are not general enough to apply to truth
discovery as a whole, and depend on the specific ideas and approaches in
use.

As far as I am aware, at the time of writing there is no general theoreti-
cal framework capable of modelling all truth discovery algorithms, which
allows general properties of such algorithms to be studied. Developing
such a framework would allow algorithms to be compared with respect to
their theoretical properties as opposed to purely practical ones, something
which has not been done in the literature to date.

A general theory of truth discovery would also facilitate deeper com-
parison between truth discovery and other areas in the literature. For
example, it was noted above that truth discovery bears similarity to be-

6 e.g. https://github.com/lvlingyu11/Truth-Discovery-for-Crowdsourcing-Data
and https://github.com/MengtingWan/KDEm

https://github.com/lvlingyu11/Truth-Discovery-for-Crowdsourcing-Data
https://github.com/MengtingWan/KDEm
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lief revision, argumentation theory and, in a more general sense, social
choice. Each of these areas have rich formal foundations which have pro-
vided useful results for both theoretical and practical purposes; develop-
ing similar foundations for truth discovery may reveal deeper similarities
and allow results in these areas to be applied to truth discovery.

An approach that has seen great success in social choice is the ax-
iomatic method, where axioms (desirable properties) of voting rules are
stated, and rules are compared with respect to these properties. Such
analysis can provide deep results; for example, K. Arrow’s famous impos-
sibility theorem [6] shows that it is impossible for a voting rule to simul-
taneously satisfy a few simple axioms that one would reasonably expect
of a fair voting rule, thus proving a fundamental limitation of voting rules
in general. The axiomatic approach has also been successfully applied in
the related areas of ranking [2, 3], recommendation [5, 19], collective
annotation [17] and belief revision [1].

This project will aim to define a theoretical framework for truth discov-
ery that is general enough for any algorithm to be modelled, independent
of the algorithm’s specific approach. Following the axiomatic method em-
ployed in social choice and related areas, axioms for truth discovery algo-
rithms will be developed to encode desirable properties. To demonstrate
the framework’s suitability as a tool for analysing real-world truth dis-
covery algorithms, Sums [27] will be defined formally and analysed with
respect to the developed axioms.



Chapter 3

Software Implementation

This chapter describes the software framework for truth discovery devel-
oped for the practical component of this project. First, high level require-
ments and the design of the system are discussed and justified.

3.1 Specification and Design

The broad goals and aims for the practical component of this project were
outlined in section 2.3.1. In this section, these ideas are developed and
made into precise requirements for the software. This is accompanied by
a high-level description of how the software is designed to meet these
requirements.

The primary use case for the system is applying truth discovery algo-
rithms to real-world datasets to tackle real-world truth discovery prob-
lems. For example, a user may have collected information from various
websites and wishes to use truth discovery to determine, as far as pos-
sible, which information is true and the trustworthiness of the websites.
To distinguish between other types of users, we shall call such users truth
discovery practitioners. To determine the best algorithm to use for their
specific purpose, these users will also be interested in evaluating algo-
rithms in various ways, such as time and memory complexity. Due to the

11
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variety of diverse domains in which truth discovery can be applied, prac-
titioners may also wish to define their own methods of evaluation specific
to their type of data.

Another use case is algorithm development. Developing and testing a
new truth discovery algorithm requires a lot of supporting infrastructure,
such as methods for loading datasets and user interfaces. Additionally,
one will often look to compare the new algorithm to existing ones, in or-
der to determine in what sense the new algorithm is an improvement; this
requires implementing existing algorithms and methods for evaluation.

Algorithm developers would therefore benefit from a library for truth
discovery that provides the necessary supporting code, allowing them to
focus solely on the development of the algorithm itself. Evaluating the ex-
isting and new algorithms with the same library also ensures comparisons
are fair.

Both the ‘practitioner’ and algorithm developer roles require evaluat-
ing algorithms in some sense. An important measure of an algorithm’s
performance is its accuracy, defined as the proportion of cases where the
algorithm predicts the true fact for an object [20, 27]. In much of the
truth discovery literature, accuracy is calculated by running an algorithm
on a dataset for which true values are already known for some objects. We
will refer to such datasets as supervised datasets. Supervised datasets are
often constructed synthetically, where sources, facts and claims are gen-
erated randomly according to some statistical model, due to the difficulty
in determining with confidence the true facts in real-world datasets [14,
22, 27, 35].

Accordingly, our system should provide methods for loading super-
vised datasets, both from real-world data and by synthesis, and for evalu-
ating accuracy with respect to such datasets.

The final major use for the system is to be a tool for theoretical work.
Users considering theoretical aspects of truth discovery, who we shall refer
to as theorists, will often need to construct simple instances of truth dis-
covery problems for examples and counterexamples, and run algorithms
on these instances. They may also use a software library to empirically
verify or disprove properties of certain algorithms.

Having outlined the target audience for the software implementation,
their goals and the tasks they wish to perform, we can identify distinct
components of the system and high-level requirements for each.
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• Datasets: Datasets need to be loaded from suitable formats. This in-
cludes loading files on disk for large real-world datasets, and creat-
ing small examples by hand. Additionally, supervised and synthetic
data generation should be supported.

• Algorithms: A selection of algorithms from the literature should
be implemented. Users should have control over any parameters
available, such as stopping criterion for iterative algorithms. The
implementation should be extensible so that new algorithms can be
developed without reimplementing code, to support the ‘algorithm
developer’ use case.

• Results and evaluation: Results from algorithms should be pre-
sented to the user in a suitable format that reflects the aims of the
user – the format may differ between use cases. To support evalua-
tion, information such as run time, memory usage and the number
of iterations should also be returned. It should also be possible for
users to extend the code to define their own metrics, to support
the ‘practitioner’ use case when the evaluation of an algorithm is
domain-specific.

• Visualisation: For the ‘theorist’ use case, it is important that the sys-
tem allows simple examples to be created by hand, and for these to
be analysed in some way. Visual representations such as images and
animations could be used to analyse results for small input datasets.

• User interfaces: Each of the main user types defined above have
different reasons for using the system and may perform different
kinds of tasks. A suitable user interface (or interfaces) should be
available that reflect the aims of the user and allow the required
tasks to be carried out as simply as possible.

Detailed requirements and design for datasets, algorithms and results
will depend on the model of truth discovery that is adopted, since this will
dictate the form of input and output. For our software implementation,
we aim for a model that is general enough to support a wide range of
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current and future algorithms, but does not stray too far from the model
actually used in the definition of the algorithms we wish to implement.1

For input, we shall use the sources, facts and objects model already
described; it was noted that this approach is widely applicable to popular
algorithms in the literature. However, we will use different terminology.
It is anticipated that facts for objects will commonly represent numeric
values for a variable, e.g. a source may claim the temperature in Celsius
for the weather on the 27th April in Cardiff is 14°C. In such cases it is
more natural to call ‘temperature’ a variable instead of an object, and to
call ‘14°C’ a value instead of a fact. Whilst we will not actually restrict
users to numeric values only, this terminology will occasionally be used
instead of sources/objects/facts.2 Since the same value may be used for
multiple objects, the notion of a ‘fact’ is replaced by a variable-value pair.

For output, trust and belief scores for each source and value-variable
pair will be used, as this is the more general form of output discussed in
section 2.2.

We now describe the components listed above in more detail, set out
precise requirements, and discuss high-level aspects of the design. Non-
functional requirements, which describe how the system should be as op-
posed to what it should do, are also be discussed.

3.1.1 Datasets

Format

The key parts of a truth discovery dataset are the sources, the variables,
and the values claimed by sources for these variables. In a real application
of truth discovery, one wishes to use an algorithm to determine true values
for the variables and to analyse the trustworthiness of sources; the sources
and variables therefore need to be labelled in some way so they can be
referred to in the results. Labels will most commonly be strings (e.g. ‘Met
Office’, ‘Humidity’), but other data types such as integers and floating
point numbers should be allowed too.

1 The requirements for a model here differ from those in the theoretical part of the
project (discussed in section 4.1), where we are less concerned with the model matching
the definition of specific algorithms.

2 The decision to use this alternate terminology was made early on in the project.
Whether it actually improves or worsens clarity is up for debate.
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(weather.com, 0.50, Humidity),

(weather.com, 1014.2 mb, Pressure),

(weather.com, 14°C, Temperature),

(weather.com, 16.1 km, Visibility),

(Met Office, 0.56, Humidity),

(Met Office, 1014 mb, Pressure),

(Met Office, 11°C, Temperature),

Figure 3.1: Example of a small truth discovery dataset expressed as a list of claim
tuples. The data was collected manually from two weather forecasts for Cardiff on
the 27th April 2019.

The first assumption made in this project is that these labels are unique
identifiers for sources and variables. With this assumption, a claim con-
sists of only three parts: a source label, a value, and a variable label.
There is no need to define the sources and variables separately, since the
whole set of sources and variables can be constructed from a list of claims.
A dataset will therefore be represented as a list of claim tuples. An exam-
ple is shown in figure 3.1. This format is simple to understand and work
with by hand and in code, and leads to the first requirement.

Requirement 1. Datasets can be loaded from a list of (source, value,

variable) tuples. Each component of the tuple can be any reasonable data
type, such as a string, integer, or floating point number.

For use cases other than real-world applications of truth discovery,
such as evaluation of algorithms for theoretical analysis and algorithm
development, one is not interested in the results of truth discovery for its
own sake, but for other aspects such as run time and accuracy on super-
vised datasets. In this case the labels for the sources and variables are
irrelevant – the conflicts in the claims between sources is the only impor-
tant detail. Labels can also be irrelevant even when one is interested in
the results; for example when constructing a simple ‘fake’ example dataset
by hand to analyse the results of an algorithm.

Having to create artificial labels in these cases would be inconvenient,
so a format with ‘anonymous’ sources and variables is desired. One sim-
ple way to achieve this is to have a matrix with rows corresponding to
sources, columns corresponding to variables, and claimed values as the
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[
0.50 1012.2 mb 14°C 16.1 km
0.56 1012 mb 11°C −

]

Figure 3.2: Matrix representation of the dataset shown in figure 3.1.

entries of the matrix. Sources can then be referred to by their row num-
ber if necessary, but no explicit labels need to be given. An example is
shown in figure 3.2. Note that the matrix may contain ‘empty’ cells when
a source does make a claim for all variables, such as the second source
(‘Met Office’) for the final variable (‘Visibility’) in figure 3.2.

Requirement 2. Datasets can be loaded from a matrix format with a row
for each source and a column for each variable, where the entry at row i,
column j is the value the i-th source claims for the j-th variable, or a special
value denoting an empty cell.

In all but trivial cases, datasets need to be stored and loaded from
files on disk. Due to the limited existing software for truth discovery,
there is no standardised format for storing truth discovery datasets. For
this reason we consider ‘bespoke’ formats for the claim tuple and matrix
formats described above.

The claim tuple format (requirement 1) is designed with real-world
applications of truth discovery in mind. Creating a real-world dataset
from scratch is a difficult process which requires considerable time and
effort. To create a dataset of a reasonable size the process must be auto-
mated, which presents challenges for identifying the variables and claims,
especially when dealing with unstructured sources of information such as
web pages. Furthermore, different sources may use different names for
the same variables (e.g. ‘Wind’ and ‘Wind Speed’) which must be consol-
idated – this is called schema matching [8] – and values in different for-
mats (e.g. 14mph and 22.5kmph) need to be recognised and converted
to a common form.

As such, it is expected that users will more often use data from existing
work that they did not collect themselves – such data can be readily found
on the web3 – and so will have no control over the format. With so many
different formats in use (e.g. CSV files, JSON files, relational databases),
there is no single format that can be used in all cases. Defining a fixed
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file format for our system would therefore require users to first write ‘con-
version code’ to re-write the data in the chosen format; this would take
up additional storage space, require data to be processed twice, and add
complexity for users.

Clearly some amount of code from the user is required, however, to
load data from an unknown format. Ideally the user would write as
little code as possible, specifying only how to extract (source, value,

variable) tuples, with other implementation details abstracted away.
To achieve this, base classes will be provided that implement the core

functionality for loading datasets, but leave the method of extracting
claim tuples from the file undefined. Users will then extend these classes
to implement this functionality according to the particular format in use.

This approach allows files from any format to be ready directly, as the
conversion to claim tuple format can be done on the fly.

Requirement 3. Users can load data from any custom format by imple-
menting a function that extracts (source, value, variable) tuples from
an input file.

The situation is not the same for the matrix format (requirement 2),
which is intended for evaluation and analysis of algorithms on synthetic
and hand-made datasets. In this case the datasets are more likely to be
used within the scope of this software only, and will be created by users
themselves, so the issues with defining a fixed file format described above
do not apply.

We opt to use a plain text CSV (comma separated values) format for
matrix datasets. CSV files are widely used in many domains, can be cre-
ated and edited easily in a text editor or in spreadsheet software, and
naturally represent a matrix: each line in the file represent a row, and val-
ues within a row are separated by commas. Note that empty cells can be
conveniently denoted by the ‘empty string’. Figure 3.3 shown an example
dataset in CSV format.

Requirement 4. Datasets can be loaded from a CSV file representing a ma-
trix.

3 For example, there are five real-world datasets available to download at http:

//lunadong.com/fusionDataSets.htm.

http://lunadong.com/fusionDataSets.htm
http://lunadong.com/fusionDataSets.htm
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0.50,1012.2mb,14°C,16.1km

0.56,1012mb,11°C,

Figure 3.3: CSV representation of the dataset shown in figure 3.1.

Supervised and Synthetic Data

Supervised data is often used to evaluate the accuracy of truth discovery
algorithms by considering the proportion of variables for which the pre-
dicted value is correct. Supervised datasets can be obtained by manually
determining true variable values in a real-world dataset, or by creating
the dataset synthetically. Both approaches are useful in their own ways:
real-world supervised data may be a realistic indicator of accuracy, while
synthetic data is easier to obtain and allows parameters of the dataset
to be precisely controlled (e.g. the number of sources and variables, the
proportion of true claims, the variation in claimed values etc.).

Note that supervised data is still useful if true values are only known
for a subset of variables. Running an algorithm on the full input data
provides more information for the algorithm to base its judgment on, and
the results can be evaluated based only on the subset. In any case, for
real-world datasets with hundreds of variables it is infeasible to manually
find true values for all variables with a high degree of confidence.

A supervised dataset therefore consists of a regular dataset, as defined
in requirements 1 or 2, along with a subset of variables and associated
true values.

For datasets in claim tuple form, true values can be represented simply
as a list of (true value, variable) tuples. For the matrix format, they
can be represented in an additional row.

Requirement 5. Supervised datasets can be loaded from the following for-
mats:

• a list of (source, value, variable) tuples together with a list of
(true value, variable) tuples for a subset of the variables;

• a matrix of claimed values, where the first row contains the known
true values.

For generating synthetic data, various methods have been used in the
literature.
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In some cases synthetic data is not completely artificial, but generated
based on real-world true facts [22, 27]. The number of artificial sources
is fixed and reliability levels set, either by random selection [27] or pro-
vided as input to process [22]. Claims are then generated according to
the source reliability levels. In some methods, source reliability is the
probability that any given claim from a source is true; sources choose the
correct value with this probability and choose uniformly from a set of pre-
generated false values otherwise [27]. Other methods do not explicitly
generate false facts, but generate a source’s claims by adding different
levels of noise to the true values, where the amount of noise is inversely
proportional to the source reliability [22].

There are also papers describing entirely artificial data generation [14,
35]. These approaches are broadly similar to the ones described above,
but the ‘true values’ for variables are created randomly first.

Note that sources do not make a claim for every variable in the gener-
ated set of claims, since this would not reflect the sparse nature of real-
world datasets. The number of sources for a variable can be determined
first and the appropriate number of sources selected randomly [27, 35],
or one can specify the probability of a source making a claim on any par-
ticular variable and make a probabilistic choice for each source-variable
pair [14].

For our truth discovery implementation, we aim for a simple and gen-
eral method that can be used with a variety of algorithms. A simple ap-
proach will provide value initially, and may be extended in future work to
model more specific qualities of truth discovery datasets. Taking a more
complex and opinionated view from the outset would instead make it dif-
ficult to adapt to future use cases, and risks tailoring the synthetic data
generation to a particular algorithm or type of data.

We will therefore generate synthetic data wholly artificially, i.e. not
based on real-world truths, using a fixed set of categorical values for vari-
able values. The user will specify the number of sources and variables to
generate, a reliability value for each source, the probability that a source
makes a claim for any particular variable, and the number of possible
values for variables.

For each variable, a uniform random number in {0, . . . , d − 1} will be
generated as the ‘true’ value, where d is the number of possible values
(specified by the user). Source reliability will have the probabilistic inter-
pretation mentioned above: a source with reliability p chooses the ‘true’
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value with probability p, and any other value with probability 1−p
d−1 ; that is,

the sources chooses a false value uniformly.
Having the source reliabilities specified by the user instead of gener-

ated randomly allows for different scenarios to be considered – for exam-
ple one can investigate the difference in the behaviour of algorithms when
most sources are trustworthy and when most are untrustworthy. In any
case, the user is free to generate source reliabilities randomly themselves
beforehand.

Requirement 6. Synthetic datasets can be generated based the approach
described above, using user-supplied parameters.

In practise, synthetic data is used to evaluate and compare different al-
gorithms. It is important that the algorithms are run on exactly the same
dataset, particularly when random chance is involved. The software must
therefore support saving synthetic datasets to files; a natural choice is to
use the same CSV format proposed for supervised data to avoid introduc-
ing an extra format.

Requirement 7. Synthetic datasets can be saved in the CSV format for su-
pervised data defined in requirement 5.

Large Data

Real-world truth discovery datasets are often very large. For example,
consider the stock dataset curated by the authors in [20]. Information
about 1,000 stock symbols from 55 sources was collected for each week
day in July 2011. For each stock symbol, 16 attributes for stocks were
identified. Data was obtained for 21 days, resulting in 21 × 16 = 336
variables for each stock, and 336,000 variables in total. In my own exper-
iments, I found that not all sources made a claim for all variables; even so,
across the 55 sources there are 2,843,803 claims. Since this dataset only
covers a period of one month, one may imagine that even larger datasets
are possible.

Indeed, the authors in [36] performed experiments on a highly diverse
web-scale dataset consisting of 65.7 million variables, 591 million claims,
and 33,000 sources.
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Figure 3.4: UML class diagram showing high-level design for datasets.

Any serious truth discovery implementation must therefore be able to
handle ‘large’ datasets. Clearly ‘large’ is not a precise term, but neverthe-
less we state the following non-functional requirement.

Requirement 8. The system supports loading and running algorithms on
large scale datasets without significant slow-down.

Design

With requirements for datasets defined, the main classes required for deal-
ing with input data can be identified. The core class, called Dataset,
will implement loading data from the claim tuples format defined in re-
quirement 1. This is the most general form of input: the matrix form in
requirement 2 can be reduced to this form by labelling the sources and
variables according to their respective row and column numbers. A class
MatrixDataset will therefore be a specialisation of Dataset.

Supervised data consists of a dataset and true values. In order to use
any kind of dataset (Dataset or MatrixDataset), the SupervisedData

class will hold a Dataset object; i.e. composition is used instead of in-
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heritance. Synthetic datasets are special cases of supervised data, so a
SyntheticData class will be a specialisation of SupervisedData.

For loading data from custom file formats, as set out in requirement
3, classes FileDataset and FileSupervisedData will implement the nec-
essary functionality, except the format-specific details. These will be ab-
stract classes; they must be sub-classed for the unimplemented methods
to be defined.

A UML class diagram [30] depicting the class hierarchy is shown in
figure 3.4.

3.1.2 Algorithms

The core ingredient for a truth discovery library is the implementation
of truth discovery algorithms, but so far the actual selection of algorithms
that will be implemented has not been discussed. In this section we briefly
describe the various kinds of algorithms defined in the literature, and
set out which ones will be implemented. Other aspects concerning their
implementation will then be considered.

Algorithm Selection

Many truth discovery algorithms have been described in the literature,
with wide variety in the approach and methodology used. The authors
in [20] define five categories: baseline, web-link based, IR based, Bayesian
based, and copying affected. Baseline methods are basic data fusion meth-
ods such as majority voting. These methods are not intended to be serious
contenders for truth discovery, but are useful for evaluation of ‘real’ algo-
rithms by comparison; a truth discovery algorithm should surely perform
better than majority voting to warrant the additional computational cost.

Web-link based algorithms use the structure of links between sources,
facts and objects to iteratively compute trust scores for sources and be-
lief scores for facts. Examples include Sums, Average·Log, Investment and
PooledInvestment [27]. They are inspired by algorithms that measure au-
thority of web pages based on hyperlink structure, such as Hubs and Au-
thorities [16] and PageRank [25].

IR (information retrieval) based methods use similarity measures pop-
ular in information retrieval, such as cosine similarity, to measure similar-
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ity between sources’ claims, and use this to infer trust and belief. Exam-
ples include Cosine, 2-Estimates and 3-Estimates [14].

Bayesian based methods employ Bayesian probability and statistics to,
roughly speaking, determine the probability that sources will claim true
facts. Examples include TruthFinder [35], LDT [38], BCCTD [12], PTDCorr
[34], and the algorithms defined in [33].

Copying aware algorithms consider copying relationships between sources,
and aim to reduce the trustworthiness of sources that copy from others.
Examples include the algorithms defined in [11].

The survey in [21] notes an additional class of algorithms that define
truth discovery as an optimisation problem. Sources are assigned weights
(i.e. trust scores), and variables assigned ‘true’ values. The objective
function, to be minimised, is the sum of the distances between ‘true’ val-
ues and source claims, with each distance weighted by the source weight.
Distances must be measured using a metric suitable for the data type of
the variables.

In terms of implementation, most algorithms operate in an iterative
fashion, and alternate between source trustworthiness and true fact in-
ference steps. The inference steps vary from simple update rules (e.g.
Sums, Average·Log and friends), to complex operations involving several
hyperparameters (e.g. Bayesian statistical methods).

Ideally, the implementation for this project would cover a range of
algorithms from each of the above categories, including both simple and
complex ones. However there is limited time available, and other aspects
of the work besides the implementation of algorithms to consider. For
this reason we will require only that some of the simpler algorithms are
implemented.

The simplest method to implement is undoubtedly the baseline major-
ity voting method. Voting will also be useful for evaluation of algorithms,
which is an important consideration for this project. For non-baseline
methods, it is my view that the web-link based algorithms proposed in
[27] are the simplest to implement, along with the more straightforward
Bayesian methods such as TruthFinder. Implementing ‘simple’ algorithms
only still provides a useful framework, in which more advanced algo-
rithms can be considered in future work.

Requirement 9. The algorithms implemented include baseline majority vot-
ing, Sums, Average·Log, Investment, PooledInvestment and TruthFinder.
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Parameters

Many algorithms have depend on various parameters that control their
operation. Some parameters are specific to particular algorithms, whereas
others apply widely to whole classes of algorithms.

It is important that the system allows users to fine-tune these param-
eters. This is particularly important for evaluation use cases, where one
may be interested in not just comparing different algorithms against each
other, but comparing instances of the same algorithm with different pa-
rameters. Additionally, some parameters have no semantic meaning (e.g.
g for Investment and PooledInvestment), so that experimentation may be
the only sensible way to choose values for them.

All the algorithms listed in requirement 9 (except baseline voting) op-
erate iteratively and recursively, updating trust and belief scores based on
the scores in the previous iteration. There are two parameters that apply
globally to this class of algorithm: the mode of iteration and priors.

The recursion aspect requires that initial trust or belief scores are spec-
ified. Four of the algorithms listed use fact beliefs as the initial values
(called priors in [27]), so we will do the same. Users should be able to
select the method of assigning these initial scores; for example all facts
could receive the same score (referred to later as fixed priors), or belief
could be distributed evenly amongst facts for the same object (uniform
priors).

Requirement 10. The method of assigning prior belief scores can be speci-
fied when running an algorithm.

The iterative aspect means that algorithms run until a pre-defined
stopping criterion is satisfied. The stopping criterion is clearly an im-
portant parameter, as the results may be greatly affected by it – both in
terms of how well truths are discovered in the data, and in terms of run
time.

A basic method of iteration is to simply perform a fixed number of
iterations in all cases. More commonly though, algorithms iterate until
‘convergence’ of source trust scores, i.e. until trust scores settle down to
fixed values.

In a truth discovery problem with m sources, the set of trust scores
can be seen as a vector in Rm, which is a metric space when equipped with
a suitable metric. Convergence of a sequence in a metric space (X, d) is
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defined as follows: a sequence (xn)n∈N in X converges to y ∈ X iff for any
ε > 0 there exists N ∈ N such that d(xn, y) < ε for all n > N .

The convergence (or otherwise) of a sequence in this sense cannot be
determined via purely computation means, since infinitely many terms
would have to be considered.4A common heuristic is to instead iterate
until the distance between successive terms passes below a fixed (small)
threshold δ.

For the metric d, common choices for Rm include the metrics induced
by the `p norm (for p ≥ 1) and the infinity norm, which are d(~x, ~y) :=

(
∑m

i=1 |xi − yi|p)
1
p and d(~x, ~y) := max1≤i≤m |xi − yi| respectively. The cases

p = 1 and p = 2 of the `p norm, called the Manhattan and Euclidean norms
respectively, are widely used.

Some authors consider a looser sense of convergence, where a function
that does not qualify as a metric is used to measure distances between
iterations. For example, the authors of TruthFinder use cosine distance to
determine when iteration should stop, but cosine distance does not satisfy
the triangle inequality and is therefore not a metric.5

To facilitate such approaches, we will use the term distance measure to
mean any function Rm × Rm → [0,∞) that is used to compare the trust
scores in successive iterations.

Two parameters required for convergence until iteration are therefore
the distance measure d and the threshold distance δ. It is possible that the
distance always remains above δ; to avoid an infinite loop a maximum
iteration count should also be given.

Requirement 11. The mode of iteration can be specified when running an
iterative algorithm. The mode may be one of:

• Fixed iteration, where a fixed number of iterations are performed;

• Convergence iteration, where iteration continues until the distance
between trust scores in successive iterations, measured by a user-specified

4 This issue is discussed in more detail in section 4.2.4.
5 Cosine distance is defined as 1 minus cosine similarity:

d(~x, ~y) := 1− ~x · ~y
‖~x‖‖~y‖

where · denotes the dot product and ‖ · ‖ the Euclidean `2 norm.
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distance measure, becomes smaller than a user-specified threshold level,
or a maximum number of iterations are performed. The available dis-
tance measures include `1, `2, `∞ and cosine distance.

Finally, particular algorithms may have their own parameters, such as
the ‘dampening factor’ in TruthFinder. Such parameters should also be
possible for the user to define.

Requirement 12. Algorithm-specific parameters can be specified by the user
when running an algorithm.

Development

For the development use case, users need to extend code and define their
own algorithms. This clearly requires some interaction with the code base,
but should not require users to know implementation details of other
(unrelated) areas of the software, such as loading datasets and user in-
terfaces. Even some algorithm-related functionality should be handled
external to the user’s code, such as checking the stopping criterion and
reading parameters from user input.

To achieve this we aim to isolate the algorithm-specific code so that it
can be overridden without needing to reimplement generic functionality.
Doing so lowers the barrier to entry for algorithm developers, requiring
less time investment to start working with the library. We state a non-
functional requirement to capture these ideas.

Requirement 13. Users can implement new algorithms without needing
to reimplement or know implementation details of unrelated parts of the
software.

Design

As with the design for datasets in section 3.1.1, the class hierarchy for
the implementation of algorithms can now be set out so as to meet the
requirements defined above.

It was noted above that the implementation of an algorithm includes
both generic functionality and the core steps the algorithm itself. An ab-
stract base class BaseAlgorithm will contain the generic functionality, and
each individual algorithm will be implemented as a sub-class.
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Figure 3.5: UML class diagram showing high-level design for algorithms and itera-
tors.

Iterative algorithms have yet more generic functionality, such as initial-
ising iteration and prior beliefs; this will be implemented in a BaseIterativeAlgorithm

class.
For iteration, it should be possible to use either fixed or convergence

iteration with any algorithm. As such the iteration logic itself – particu-
larly the stopping criterion for convergence – should be defined outside
the algorithm classes themselves. This avoids repetition of code in pursuit
of requirement 13. A base class Iterator will implement any common
functionality, with FixedIterator and ConvergenceIterator sub-classes
providing the actual logic. Each iterative algorithm object will then have
an Iterator instance as a parameter.

Finally, we note that PooledInvestment is a specialisation of Investment,
and so will be implemented as a sub-class.
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Trust: {

"source 1": 1.0,

"source 2": 0.5,

"source 3": 0.5,

"source 4": 0.75,

"source 5": 0.1

}

Belief: {

"var 1": {

"7": 0.9, "8": 0.3, "43": 0.01

},

"var 2": {

"green": 0.7, "red": 0.9, "dark red": 0.93

}

}

Figure 3.6: Example of the raw results of a truth discovery algorithm as key-value
mappings.

These classes and their relationships are illustrated in the UML class
diagram in figure 3.5.

3.1.3 Results and Evaluation

Having run a truth discovery algorithm, users need to obtain the results in
some way. Results include the raw trust and belief scores as produced by
the algorithm, and information about the running of the algorithm itself,
such as time/memory usage and the number of iterations.

Evaluation of algorithms – which is a key task for all the use cases
defined at the start of this chapter – will be based solely on the results
they return. As such the requirements for evaluation may shape the form
results are presented in, so we consider results and evaluation together in
this section.

For the ‘practitioner’ use case, where algorithms are run on real-world
datasets, users clearly need to access the trust and belief scores given by
the algorithm. For trust scores, a key-value mapping that maps source
labels to trust scores is a convenient representation. For belief scores,
each variable has a number of proposed values, which in turn have belief
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scores. A two-level mapping can be used here: keys at the outer level are
the variable labels, and the proposed values are mapped to belief scores
at the inner level. An example is shown in figure 3.6.

There are a number of derived results that can be obtained from the
raw trust and belief scores, including the value for each variable with
maximum belief score (these are often taken as the ‘true values’ in ap-
plications), and statistics regarding the trust and belief scores, e.g. the
mean and standard deviation. For convenience, these calculations will be
implemented in a method that users can call as required.

Finally, recall that in a real application there may be hundreds or thou-
sands of sources and variables. It may be that only a subset variables are
of interest, so it should be possible for users to ‘query’ their results and
only include specified sources and variables.

Requirement 14. Results of an algorithm are given in the key-value map-
ping format shown in figure 3.6. Methods are available to obtain the fact
for a given variable with maximum belief score, and the mean and standard
deviation of trust and belief scores. Results can also be limited to a specified
set of sources and variables.

When it comes to evaluation of algorithms, two important metrics are
time and memory usage. Time usage is straightforward to calculate, but
memory usage needs to be defined precisely. For example, it could be
interpreted as the maximum memory in use at any given time during the
algorithm’s operation, or the total memory allocated; these measurements
could be vastly different. We defer the precise meaning to the implemen-
tation.

Time and memory usage are useful for real-world uses, where one
may compare different algorithms on the same data to determine which
is more efficient, but also for algorithm development and theoretical pur-
poses, where the asymptotic complexity can be estimated by running an
algorithm on datasets of increasing size (such datasets could be generated
synthetically).

For evaluation of iterative algorithms, analysing the behaviour of con-
vergence is also important. This includes the total number of iterations
taken, and the distances between trust scores in successive iterations over
time. For example, does the distance decrease linearly, or does the con-
vergence ‘slow down’ as iteration progresses? Users may answer such
questions if given detailed information on convergence is provided.
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Requirement 15. Time, memory usage and iteration statistics (where ap-
plicable) are returned alongside the raw results of an algorithm.

Another important aspect of evaluation is accuracy on supervised datasets.
As mentioned previously, this is usually defined as the proportion of vari-
ables where the value with highest belief score is the correct one accord-
ing to the supervised data. However, the precise accuracy calculation may
vary depending on the type of dataset in use: consider a case where the
true value of a variable is ‘8’, but the most likely value according to an al-
gorithm is ‘8.00’. Whether this is acceptable as a correct answer depends
on the context in which truth discovery is being applied.

Nevertheless, a basic implementation of accuracy can be provided that
compares values exactly (i.e ‘8’ would be considered distinct from ‘8.00’).
This will be useful in most cases, and users may extend this implementa-
tion for their own more specific accuracy calculations if required.

Requirement 16. Users can calculate the accuracy of a set of results with
respect to a supervised dataset.

Finally, the ‘theorist’ use case involves analysing theoretical properties
of algorithms. One interesting task is to compare the results of an algo-
rithm between two datasets, i.e. to study the effects of a small change
in the input data.6 This leads to the final requirement for results and
evaluation.

Requirement 17. Two sets of results can be compared to view

• changes in trust and belief scores (for sources and facts present in both
results);

• differences in time and memory usage, and the number of iterations
taken (where applicable)

Design

The class structure for results and related functionality is illustrated in
figure 3.7. The Result class will represent the results of an algorithm,
and has fields for trust and belief scores (in the key-value format described

6 See the Monotonicity axiom in section 4.2.3 for an example of the type of change
that could be studied.
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Figure 3.7: UML class diagram showing high-level design for results.

above), time and memory usage, and the number of iterations. Note that
the number of iterations is not applicable to all algorithms – it does not
apply to majority voting – yet we include it in the results class. This is
because we expect that voting is an outlier in this respect, and that almost
all future algorithms to be implemented will be iterative.

Comparing results will be done using the ResultDiff class, which
stores the differences between the fields in its two component Result

objects.

3.1.4 Visualisation

For the ‘theorist’ use case defined previously, we stated that users will
be interested in creating small examples of truth discovery problems to
analyse the behaviour of algorithms. This involves inspecting results, and
comparing results in different cases. Whilst this is possible using the key-
value form of results defined in the previous section, a visual representa-
tion is more suitable.
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Figure 3.8: Results from figure 3.6 represented graphically. Darker colours corre-
spond to higher trust and belief scores.

For example, consider the set of results that were given in the tex-
tual key-value pairs format in figure 3.6. They may alternatively be rep-
resented by the colour-coded graph, shown in figure 3.8, where darker
colours correspond to higher trust and belief scores.

It is my view that the visual representation is much more useful for
extracting key information at a glance. For example, one immediately
sees which sources are most and least trustworthy, and which values are
most and least believable. It can also aid in developing intuition for what
is going on, which is important for theoretical work. Note that this only
applies to small datasets: any more than a handful of sources, values and
variables would cause the graphs to become overly crowded.

Graphs can also be useful for visualising datasets alone, i.e. without
colouring the nodes according to the results of some algorithm. For ex-
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ample, chapter 4 includes several figures that demonstrate datasets with
particular properties, and datasets that provide counterexamples for par-
ticular properties of algorithms.

Requirement 18. A dataset can be represented visually as a graph with
nodes for sources, variables and values, and edges indicating connections
between them.

The results of an algorithm can additionally be shown in the graph by
colouring sources and values according to their respective trust and belief
scores.

We note that the graph representation corresponds to the definition of
input to a truth discovery problem in the theoretical analysis of chapter 4.

In addition to visualising the end results of an algorithm, one may wish
to visualise the convergence of results. Requirement 15 partly addresses
this by ensuring users can access statistics regarding the convergence of
trust scores for all sources as a whole. However for small datasets where
a graphical representation is feasible, we can do even better, and visu-
alise the convergence of scores for individual sources by means of an an-
imation. This will simply be a sequence of graph images coloured-coded
according to trust and belief scores as described above.

Requirement 19. Animations can be generated that show the results of an
iterative algorithm at each iteration as a colour-coded graph.

Design

A UML diagram showing the design and class hierarchy for graphing
datasets and results is shown in figure 3.9. Note that this diagram ref-
erences classes first defined in previous sections, namely Result, Dataset
and BaseIterativeAlgorithm.

The core class for producing graphs will be GraphRenderer. It will
contain a Dataset object and a ColourScheme object for specifying the
colour palette; other graphical settings (node size, border widths etc. . . )
are encapsulated in the display settings field in the diagram for brevity.
The ResultsGradientColourScheme class will implement colouring nodes
according to their scores in the results of an algorithm, and is a speciali-
sation of ColourScheme.
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Figure 3.9: UML class diagram showing high-level design for graphical representation
of datasets and results.

For animations, an Animator class will take dataset and algorithm ob-
jects as input, and create an image for each partial result as the algorithm
progresses. Individual frames will be rendered via a GraphRenderer to
avoid duplication of functionality.

3.1.5 User Interfaces

So far we have discussed the form of users’ interactions with the system,
but not the specific interface they will use. In this section we consider
appropriate user interfaces for the use cases and tasks described.

Since the use cases have sometimes widely varying goals and con-
straints, there is no single interface that will be suitable for all purposes.
For example, using the software as a tool for theoretical analysis requires
building datasets by hand and detailed inspection of results. By contrast,
real-world applications need to load datasets from files, and the scale of
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the data makes it impractical to look at detailed results for each source
and variables.

There is also variation in aims for the same broad use case: e.g. al-
gorithm development clearly requires interacting with the code itself on
the one hand (i.e. using an API interface from code), but may also require
investigating results on smaller datasets to get a feel for its behaviour. The
latter could also be done from code, but a graphical interface could allow
for simpler data entry and visualising results.

With this in mind, we propose three separate user interfaces:

• API: a simple and well-documented Python API7 covering the en-
tire codebase will support algorithm development, loading datasets
from bespoke formats and integrating the library with other code.
Additionally, an all-encompassing API ensures that all functionality
is available to users in at least some form, even if it is not imple-
mented in other more accessible interfaces.

• Command-line: this will be suitable for tasks involving large datasets
– where graphical representations are infeasible – and for inter-
facing with other code at a higher level (for example, to be used
with programming languages other Python). Also, well designed
command-line interfaces can often be simpler to use than graphical
ones, particularly when there are many sub-commands and options
available.

• Web-based: for small-scale datasets and non-technical users, a web-
based interface will be provided. This will make it easy for new users
to try out the software without learning a command-line interface
or API. It also allows the graphical representations discussed above
to be presented in a simple way.

API

In this context, by API we simply mean a set of public-facing classes for
users to interact with in their own code. These classes should allow the
user to have full control over operation of algorithms, datasets etc. . . ,
whilst providing a simple interface that does not require knowledge of

7 Justification for using Python as the programming language will be provided in
section 3.2.
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truthdiscovery run --algorithm sums --dataset synth-data.csv \

--supervised --output time accuracy trust

Figure 3.10: Example of command-line arguments for running an algorithm on
synthetic data.

unrelated implementation details. In particular, the user should be able to
treat the system as ‘black box’, providing their input and receiving output
without consideration for how the implementation actually works.

The design of the classes that comprise the software should therefore
consider the tasks users wish to perform, which details are relevant to
them, and what should be hidden as an implementation details.

Beside the code itself, thorough documentation and a suite of exam-
ples are essential for a successful API.

Requirement 20. A Python API is available that allows all features of the
system to be accessed without detailed knowledge of the system as a whole.

Detailed documentation and examples of API usage are also provided.

Command-Line

A command-line interface is suitable for many of the tasks described through-
out this chapter, particularly those for which input and output needs to be
stored in files, where data is large and cannot be reasonable represented
visually, and where few steps of interaction is required. It will also allow
the library to be used programmatically with other projects, particularly
if a machine-readable output format is used.

As an example, consider evaluating accuracy, run-time and trust scores
for a particular algorithm on a synthetic dataset. The use supplies a few
simple parameters, including the file to read the CSV dataset from, and
receives some simple output. An example of how this could look, follow-
ing the established conventions for command-line programs in the UNIX

world, is shown in figure 3.10.
Here truthdiscovery is the name of the program, run is the relevant

sub-command, and options are given in the long format used by many
GNU utilities.

Output should be printed to stdout – this complies with established
conventions and allows users to either inspect results by eye in their ter-
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sums:

accuracy: 0.625

time: 0.1234

trust:

0: 0.2

1: 0.4

2: 1.0

Figure 3.11: Hypothetical YAML output for the command shown in figure 3.10.

minal for small scale datasets, or use output redirection functionality from
their shell to save output to a file or pipe to other programs.

In terms of the format of the output, YAML will be used.8 YAML is a
data serialisation format that is both human and machine readable, with
implementations available for wide range of programming languages. A
hypothetical example for the output of the command in figure 3.10 is
shown in figure 3.11.

The full list of tasks that will be available in the command-line inter-
face are as follows.

• Running algorithms on CSV datasets, specifying the output fields
and parameters for algorithms;

• Generating synthetic data;

• Producing visual graph representations of datasets, and saving these
as images to files.

Requirement 21. A command-line interface is available that implements
the tasks listed above. Its form complies with conventions for command-line
programs. Output is given in YAML format where appropriate.

Web-based

A web-based interface will provide a graphical front end to the system.
This is well-suited for casual and non-technical users, as it requires no
installation and virtually all users are familiar with using the web.

8 https://yaml.org/

https://yaml.org/
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A task that will greatly benefit from a graphical interface is creating
example datasets by hand, as required for the ‘theorist’ use case, and to
some extent algorithm development. Recall that the matrix form of input
(requirement 2) is most suitable in these cases. A simple approach to in-
putting such matrices in a graphical context is to display an empty matrix
in which users can click the cells to interactively provide values. This is
less error prone than manual CSV entry, and arguably more user-friendly.

Viewing the results of algorithms for small datasets will also be pos-
sible in the web interface. There is some overlap with the command-line
client in this sense, but graphical elements such as colour, font size and
text styles can be used in a web page to enhance the output.

Finally, visualising datasets and results through images and anima-
tions, as per section 3.1.4, is simple in a web interface. When one is
interested in simply viewing such imagery, as opposed to saving to a file
for later use, it is much more convenient to have the images displayed
immediately alongside the results.

It is worth noting that the web interface has its limitations, and is not
suitable for all use cases. For example, large datasets will be difficult to
input, and the bespoke formats in which many real-world datasets are
stored cannot be used. The interface also cannot be accessed program-
matically, and making the site available to the public requires dedicated
hosting which may cost real money. Nevertheless, it will complement the
API and command-line interfaces and provide value for its intended use
cases.

Requirement 22. A web interface is available that provides a graphical
front end to the system. Users can interactively input a dataset in the matrix
format described in requirement 2, and select algorithms to run. Results can
be viewed, and images and animations as per section 3.1.4 are shown.

Design

The UML class diagram in figure 3.12 shows the high-level design for
the implementation of the user-interfaces discussed above. The API inter-
face is not represented by a single class: the API in fact consists of all the
classes defined throughout this chapter. The two more concrete interfaces,
command-line and web-based, are represented by classes CommandLineClient
and WebClient respectively. Some common functionality is required in
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Figure 3.12: UML class diagram showing high-level design for user interfaces.

both interfaces: e.g. parsing algorithm names and parameters and datasets
from user-supplied strings to their object representations. Such functions
will be implemented in a base class BaseClient.

Users will also be able to specify which output fields they wish to re-
ceive, as was illustrated in the command-line example in figure 3.10. An
enumeration OutputFields lists the available fields.

3.2 Implementation

This section discusses the software implementation at a lower level, cov-
ering how the requirements of the preceding section were actually imple-
mented in code. Justification for the programming languages and libraries
used is given first, followed by detailed descriptions of the algorithms
identified in requirement 9.



CHAPTER 3. SOFTWARE IMPLEMENTATION 40

3.2.1 Programming Languages

Python was chosen as the core programming language for this project
– specifically Python 3. Development and testing was performed with
version 3.6.7, but it is expected that it will work with versions 3.3 and
newer.9

There were several reason for choosing Python. Firstly, it is an ex-
tremely popular language – according to the TIOBE index it is fourth most
popular worldwide, as of April 2019.10 This is an important consideration,
since a major goal for the software is to be extendible to allow for new
algorithms to be developed, and for it to integrate nicely with other code.
An unpopular or obscure programming language would go against this
goal.

Due to its popularity, Python has a rich ecosystem of libraries and pack-
ages surrounding it. This allows external libraries to be used during devel-
opment to provide functionality that would otherwise take too long to im-
plement in the time available. For example, I was able to use the cairo11

library to produce graphics and Flask12 to implement a web server – both
tasks could have constituted entire projects in their own right if no suit-
able libraries were available. Such libraries are invariably more compre-
hensive than a ‘home-grown’ solution would be anyway, since they are
dedicated projects aimed specifically at graphics and web frameworks re-
spectively.

Whilst third-party libraries are not unique to Python, they are particu-
larly plentiful in the Python world, which makes it a suitable choice.

Python also has strong object-oriented programming capabilities, which
were useful for creating a clean and straightforward API. Code for differ-
ent portions of the code can be easily compartmentalised into separate
classes, making it so that users only need to be aware of the specific classes
relevant to their use case.

Finally, Python is the language I personally have the most experience
with. Using it for this project allowed me to get started quickly, without

9 To the best of my knowledge, the newest language feature used is the yield

from expression, which was added in version 3.3. See https://docs.python.org/3/

whatsnew/3.3.html#pep-380 for details.
10 https://www.tiobe.com/tiobe-index/.
11https://github.com/pygoject/pycairo
12http://flask.pocoo.org

https://docs.python.org/3/whatsnew/3.3.html#pep-380
https://docs.python.org/3/whatsnew/3.3.html#pep-380
https://www.tiobe.com/tiobe-index/
https://github.com/pygoject/pycairo
http://flask.pocoo.org
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having to learn a new language. This meant that more features could be
developed in the limited time available.

For the web interface to the software, an interactive web page was
required: e.g. for inputting data, selecting which results to view and con-
trolling animations. Such interactive elements require the use of JavaScript.
The JavaScript code interacts with the Python server via HTTP.

3.2.2 Third-party Libraries Used

The main purpose of the practical component of this project is to imple-
ment truth discovery algorithms. These algorithms often involve lots of
numerical computations, which can be represented conveniently in terms
of matrix operations on large matrices. The de-facto standard library in
the Python world for numerical computing is numpy.13 Amongst other
things, numpy has a highly efficient n-dimensional array implementation,
written in C, which supports various operations including matrix multi-
plication (the case n = 2 of an n-dimensional array is a matrix). Another
library scipy14 – which is often used in conjunction with numpy – imple-
ments sparse arrays, which are optimised to store large arrays with few
non-zero entries in a memory efficient way. Operations can also be per-
formed on sparse arrays efficiently without converting to a ‘dense’ format.
Sparse arrays were essential in this project for representing large real-
world datasets, and numpy and scipy were used extensively throughout.

For generating graphics, cairo was used. The graphs described in
requirement 18 only require simple drawing, such as circles, lines, rectan-
gles and basic text rendering. cairo was more perfectly sufficient for this,
and provides a simple and straightforward API. For generating animations
as per requirement 19, imageio15 was used to combine PNG images pro-
duced by cairo into an animated GIF.16

As briefly mentioned already, Flask was used to provide the back-
end server for the web interface. Testing was performed with the help of
pytest,17

13https://www.numpy.org/
14https://www.scipy.org/
15https://imageio.github.io/
16 Note that cairo and imageio are not used for the images and animations shown

in the web interface: JavaScript canvas drawing is used instead.
17 https://docs.pytest.org/en/latest/

https://www.numpy.org/
https://www.scipy.org/
https://imageio.github.io/
https://docs.pytest.org/en/latest/
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For the web front-end, I opted to use AngularJS,18 a JavaScript library
designed to simplify the development of web applications and encourage
rapid development. In particular, Angular removed the need for large
amounts of simple and tedious code in my application, and its simplic-
ity allowed me to implement features that I may not have bothered with
otherwise. For the visual aspect of the web interface, I used a CSS frame-
work called Spectre.css,19 which handles visual styling of elements on
the page and provides responsive and mobile-friendly layouts.

Sphinx was used for documentation.20 Sphinx compiles reStructuredText
sources to HTML, and can automatically parse Python source files to doc-
ument classes and methods. For this project the documentation includes
a user guide and examples of using the API and CLI client, with links to
the class API documentation as appropriate.

3.2.3 Truth Discovery Algorithms

In this section we describe in detail the algorithms implemented for this
project – namely majority voting, Sums, Average·Log, Investment, Pooled-
Investment and TruthFinder – and how they were implemented in code.

The format of truth discovery datasets was discussed from a user’s per-
spective in section 3.1.1. In terms of actual implementation, yet another
representation is most appropriate: the dataset is represented by two ma-
trices (distinct from the matrix format described in requirement 2), trust
and belief scores are stored as vectors, and scores are updated at each
iteration using matrix operations.

Some notation is required to properly define the algorithms above.
Consider a fixed dataset of m sources labelled 1, . . . ,m and n distinct facts
labelled 1, . . . , n. Note that the labelling is arbitrary. We denote the set
of sources claiming fact j by src(j), the set of facts claimed by source
i by facts(i), and the object relating to fact j by obj(j).21 The set of
facts about the same object as j – the facts mutually exclusive with j – is
mut(j) = {k : obj(k) = obj(j)}.

The trust scores for an algorithm at iteration t ∈ N will be denoted
T t ∈ Rm, and the belief scores Bt ∈ Rn. Subscripts will denote the entries

18https://angularjs.org/
19https://picturepan2.github.io/spectre/
20 http://www.sphinx-doc.org/en/master/

https://angularjs.org/
https://picturepan2.github.io/spectre/
http://www.sphinx-doc.org/en/master/
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in these vectors; i.e. T ti is the trust score for source i at iteration t.
The following matrices can be used to represent the dataset and per-

form the trust/belief score updates.

• Source-claims matrix: this binary m × n matrix indicates which
claims are made by which sources, and will be denoted here by M .
It is defined as:

[M ]ij =

{
1 if i ∈ src(j)

0 otherwise

i.e. 1 if source i claims fact j, and 0 otherwise.

• Mutual exclusion matrix: this n × n matrix, denoted X, indicates
which facts relate to the same object, i.e. which facts are mutually
exclusive:

[X]kj =

{
1 if obj(k) = obj(j)

0 otherwise

Note that X is symmetric.

In practise, both M and X are often extremely sparse, in that most
entries are 0. Note that a truth discovery dataset is uniquely determined
by M and X, up to the ordering of the sources and facts.

Using this notation, each algorithm listed above is specified by three
components:

• the prior belief scores B0, which may depend on M and X;

• the formulae for obtaining T t+1 and Bt+1 from Bt, T t, M and X;

• the stopping criterion.

Note that we do not claim all iterative truth discovery algorithms are
determined by these three factors, merely that the ones implemented in
this project are. However, this structure is common across the literature.

Since it was stated in requirement 11 that the user should have full
control over the stopping criterion, we do not consider it as part of the
algorithm here.

21 This notation is similar to that which will be adopted in the theoretical work in
section 4.2, but adapted to the set up here.
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Prior Belief Scores

It was stated in requirement 10 that the user should be able to specify
how the prior belief scores are assigned to facts. We choose the priors
defined by Pasternack and Roth in [27] for the available options: fixed,
uniform and voted.

• Fixed: each fact is assigned a score of 0.5:

B0 = 0.5en

where en = [1, . . . 1] ∈ Rn is the vector consisting of n ones.

• Uniform: each object is allocated unit belief, which is distributed
evenly amongst objects, i.e. the score for fact j is 1

|mut(j)| . Note that
|mut(j)| is the sum of the j-th row of X, which is given by the j-th
entry of Xen. We may therefore write

B0 =
1

Xen

where the division is performed entry-wise.

• Voted: the belief in a fact is proportional to the number of sources
claiming it, with the scores scaled such that the total belief across
each object is 1:

B0
j =

|src(j)|∑
k∈mut(j) |src(k)|

Note that |src(j)| is the sum of the j-th column of M , i.e. the j-th
entry of MT em. Set v =MT em. Also note that k ∈ mut(j) iff [X]jk =
1 and [X]jk = 0 otherwise. The denominator above is therefore

∑
k∈mut(j)

|src(k)| =
n∑
k=1

xjkvk = [Xv]j

Performing entry-wise division of vectors, we may write

B0 =
v

Xv
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numpy supports matrix multiplication and entry-wise division as used
above, which makes computing prior beliefs extremely simple when ex-
pressed in this form.

We can now define the truth discovery algorithms in terms of matrix
operations in a similar way.

Sums

Inspired by the Hubs and Authorities [16] for ranking web pages based on
the hyperlink structure of the web, Sums sets the trust score for a source
to the sum of the belief scores of its facts, and vice versa:

T t+1
i =

∑
j∈facts(i)

Bt
j

Bt+1
j =

∑
i∈src(j)

T t+1
i

Sums has a natural matrix representation, which is also given in the
original Hubs and Authorities paper. Note that j ∈ facts(i) iff i ∈ src(j)
iff [M ]ij = 1, and [M ]ij = 0 otherwise. Hence

T t+1
i =

n∑
j=1

[M ]ijB
t
j = [MBt]i

and similarly
Bt+1
j = [MTT t+1]j

so the trust and belief updates are simply

T t+1 =MBt

Bt+1 =MTT t+1

To prevent the trust and belief scores growing without bound, T t+1 and
Bt+1 are normalised by dividing by maxi T

t+1
i and maxj B

t+1
j respectively

after the above operations.
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AverageLog

Sums allows sources to inflate their trust score by simply making many
claims, which is potentially undesirable. The number of claims should
not be ignored, however: a source with 90% accuracy over a hundred
claims is surely more trustworthy than one with 90% accuracy over 10
[27]. Average·Log attempts a compromise by setting the trust score for a
source to the average belief score of its claims, multiplied by the logarithm
of the number of facts it claims.

T t+1
i = log(|facts(i)|) ·

∑
j∈facts(i)B

t
j

|facts(i)|

Taking a logarithm ensures that making many trivial claims has diminish-
ing returns for sources. Belief score update is the same as for Sums.

Observe that |facts(i)| is the sum of the i-th row of M , which is the
i-th entry of Men. It was shown for Sums that the sum of the belief scores
is the i-th entry of MBt. Set

w =
log(Men)

Men

where the log and division are taken entry-wise. Then

T t+1 = w ◦MBt

where ◦ denotes entry-wise multiplication of vectors (also called the Hadamard
product).

As with Sums, normalisation is performed to prevent numerical over-
flow.

Investment

In Investment, sources invest their trust among their claims, belief scores
are grown non-linearly, and sources receive trust returns proportional to
the their investment in the next iteration (relative to other sources). More
detail on the intuition behind the algorithm is given in [27]. The trust and
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belief updates are as follows.

T t+1
i =

∑
j∈facts(i)

Bt
j ·

T ti

|facts(i)| ·
∑

r∈src(j)
T t
r

|facts(r)

Bt+1
j = G

 ∑
i∈src(j)

T t+1
i

|facts(i)|


where G(x) = xg. The parameter g is set to 1.2 in [27]. In our implemen-
tation the g value can be specified by the user, but defaults to 1.2.

Each sources invests their trust score evenly amongst its facts: the in-
vestment amount is T t

i

|facts(i)| for source i. Let St be the vector of investment
amounts at iteration t, i.e.

St =
T t

Men
Then we have

T t+1
i =

n∑
j=1

[M ]ij ·Bt
j ·

Sti∑m
r=1 [M ]rj · Str

= Sti ·
n∑
j=1

[M ]ij ·Bt
j ·

1

[MTSt]j

= Sti ·
n∑
j=1

[M ]ij
[MTSt]j

·Bt
j

Define an m×n matrix N by [N ]ij =
[M ]ij

[MTSt] j
; then the sum is the i-th entry

of NBt, so
Tt+1 = St ◦NBt

For belief update, we have

Bt+1
j = G

(
m∑
i=1

[M ]ij · [St+1]i

)
= G

(
[MTSt+1]j

)
so Bt+1 is obtained by applying G to each entry in MTSt+1.

Again, normalisation is performed by dividing by the maximum trust
and belief scores.
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PooledInvestment

PooledInvestment uses the same trust update as Investment, but belief scores
are linearly scaled after applying G so that the total across each object is
preserved. We defer the detailed interpretation to [27]. The belief update
is as follows: with H t+1 ∈ Rn defined by H t+1

j =
∑

i∈src(j)
T t+1
i

|facts(i)| :

Bt+1
j = H t+1

j ·
G(H t+1

j )∑
k∈mut(j) G(H

t+1
k )

Note that H t+1
j is the total amount ‘invested’ in fact j before applying G in

Investment, so we have H t+1 =MTSt+1 with St+1 defined as above.
Write H̃ t+1 = G(H t+1), where G is applied entry-wise. Then the sum

in the denominator is∑
k∈mut(j)

G(H t+1
k ) =

n∑
k=1

[X]jkH̃
t+1
k = [XH̃ t+1]j

Hence we have

Bt+1 = H t+1 ◦ H̃ t+1

XH̃ t+1

Normalisation is performed after the trust and belief updates.

TruthFinder

TruthFinder, by Yin et. al. [35], was one of the first truth discovery algo-
rithms to be introduced. In contrast to the algorithms above, belief scores
in TruthFinder have pseudo-probabilistic interpretation: Bt

j is (an estimate
for) the probability that fact j is correct. TruthFinder also uses prior trust
scores instead of prior belief scores; trust for each source is set to a fixed
initial value t0, which can be specified by the user in our implementation
but defaults to 0.9.

TruthFinder also considers implications between claims for cases where
confidence in one fact should increase (or decrease) the confidence in
another. For each pair of facts f1, f2 relating to a common object, an im-
plication value imp(f1 → f2) ∈ [−1, 1] describes the level of implication:
1 for strong positive implication, -1 for strong negative implication, and 0
for no implication. The specific method of assigning implication values is
domain-specific.



CHAPTER 3. SOFTWARE IMPLEMENTATION 49

An example from [35] is as follows: suppose a fact f1 states that the
author of a particular book is ‘Jennifer Widom’, and a second fact f2 gives
the authors of the same book as ‘Jennifer Widom and Stefano Ceri’. If we
have high confidence in f2, then f1 is incomplete and thus should receive
low confidence: the implication imp(f2 → f1) should be low. On the
other hand, it is common for sources to list only the first author of a book,
even when multiple authors exist. If we are confident about f1, then we
should also be confident about f2, because f2 is consistent with f1. Thus
imp(f1 → f2) should be high. This example illustrates that the implication
values are asymmetric.

As for the actual definition of TruthFinder, it is already given in terms
of matrix operations in the original paper, using an m × n matrix U and
n×m matrix V defined as follows.22

[U ]ij =

{
1/|facts(i)| if j ∈ facts(i)

0 otherwise

[V ]ji =


1 if j ∈ facts(i)

ρ · imp(fk → fj) if k ∈ facts(i) for some k ∈ mut(j)

0 otherwise

where ρ ∈ [0, 1] is a parameter controlling the influence of implications
between facts. It defaults to 0.5 in our implementation.

The definition of trust and belief updates make use of additional vec-
tors τ ∈ Rm and σ ∈ Rn; these represent trust and belief scores scaled
from [0, 1] to [0,∞) by taking a logarithm. The precise definitions are as
follows (as usual, logarithms, scalar addition etc. for vectors are taken
entry-wise).

τ t+1 = − log(1− T t)
σt+1 = V τ t+1

Bt+1 =
1

1 + exp(−γ · σt+1)

T t+1 = UBt+1

γ ∈ (0, 1) is a parameter called the dampening factor; details can be found
in the original paper. It defaults to 0.3 in our implementation.

22 U and V are called A and B in the original paper.
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3.3 Results and Evaluation

Having described the requirements for the truth discovery software frame-
work in section 3.1 and aspects of its implementation in section 3.2, we
come to demonstrating exactly what was implemented and evaluating the
system against the requirements. The demonstrations will cover each of
the use cases identified, including real-world truth discovery applications
and evaluation of algorithms.

3.3.1 Real-World Dataset Demonstration

The main use case for the system is to run truth discovery algorithms on
real-world datasets. The stock dataset briefly described in section 3.1.1
provides a suitable example of ‘large’ real-world data to test with: it con-
tains 2,843,803 claims covering 336,000 variables from 55 sources.23

The claims relate to 1,000 distinct stocks. For 100 of these, data was
manually obtained from NASDAQ by the original authors, and these val-
ues are taken to be ground truths. This means we can not only run al-
gorithms on the large dataset, but also load supervised data and assess
accuracy with respect to the NASDAQ ground truths.

Additionally, the data is in a TSV (tab separated values) format, which
allows us to demonstrate the base classes FileDataset and FileSupervisedData

for loading data from custom formats.
The Python classes are shown in figure 3.13. Note that no code is

given to actually open the files and construct the matrices required for
running algorithms: this is handled automatically by the FileDataset

and FileSupervisedData base classes.
A small script was created to run each algorithm on the dataset with,

initialised with its default parameters. The results are shown in figure
3.14.

From these results we see that TruthFinder is by far the quickest (ex-
cluding majority voting), but achieves poor accuracy. It should be noted
that TruthFinder was run without considering implications between claims,
which may explain this. We also see that Sums and PooledInvestment are
the only algorithms that perform better than näıve majority voting.

23 The dataset was collected by the authors in [20], and is available to download at
http://lunadong.com/fusionDataSets.htm.

http://lunadong.com/fusionDataSets.htm


CHAPTER 3. SOFTWARE IMPLEMENTATION 51

Figure 3.13: Python code for loading the stock dataset.
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loading data...

loaded in 208.617 seconds

loading true values...

loaded in 0.119 seconds

dataset has 55 sources, 2843803 claims, 336000 variables

running MajorityVoting...

0.280 seconds, 0.641 accuracy

running Sums...

11.998 seconds, 0.646 accuracy

running AverageLog...

12.172 seconds, 0.641 accuracy

running Investment...

31.216 seconds, 0.423 accuracy

running PooledInvestment...

18.545 seconds, 0.671 accuracy

running TruthFinder...

1.598 seconds, 0.439 accuracy

Figure 3.14: Results for the stock dataset for each algorithm.

3.3.2 Synthetic Data Accuracy Experiments

Another key use case for the system is evaluation of algorithms with re-
spect to their accuracy on synthetic datasets. Unlike real-world datasets,
synthetic datasets are easy to obtain, allow accuracy to be calculated, and
their parameters can be precisely controlled. One can also generate mul-
tiple datasets with varying parameters to study the effects of changes in
certain parameters.

Recall the parameters available in this project: the source reliability
scores (interpreted as probabilities), the number of variables to generate,
the probability that a source will make a claim for a given variable (re-
ferred to as the claim probability), and the domain size for each generated
variable. We will explore this parameter space in a number of directions to
demonstrate the types of analysis that can be performed with the system.

The first experiment studies the effects of the distribution of source
reliability scores. We consider three distributions:

• Mostly bad: a third of sources have reliability score 0.75, and the
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Figure 3.15: Source trust distribution experiment on synthetic datasets.

remaining two-thirds have score 0.25, i.e. most sources are correct
only 25% of the time.

• Uniform: reliability scores are drawn from a uniform distribution
on [0, 1].

• Normal: reliability scores are drawn from a normal distribution
with mean 0.5 and standard deviation 0.15. It is possible for scores
to be less than 0 or greater than 1: they are clipped to 0 or 1 in such
cases.

For each of these distributions, source reliability scores were generated
and a synthetic dataset produced with 100 sources, 100 variables, 0.1
claim probability and 5 domain values. Each algorithm was then run (on
the same dataset), and its accuracy computed. This process was repeated
10 times for each distribution in an attempt to cancel out random effects
of the reliability score and claim generation.

The mean accuracy scores were then taken as the final results, which
are shown in figure 3.15.
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Figure 3.16: Claim probability experiment on synthetic datasets.

As one might expect, the ‘Mostly bad’ distribution leads to the poorest
accuracy for all algorithms, with the exception of PooledInvestment where
‘Normal’ gave slightly worse accuracy.

For the next experiment, the effects of the claim probability pc on accu-
racy were investigated. Recall that for each artificial source and variable, a
claim is made with probability pc. In the extreme case pc = 1, every source
claims a value for every variable. The dataset becomes more ‘sparse’ as pc
decreases.

In the experiment, claim probability was increased from 0.1 to 1 in
increments of 0.05. For each value, 10 synthetic datasets were generated
with a uniform trust distribution over 100 sources, 100 variables, and
10 domain values. The mean accuracy of each algorithm across the 10
datasets is shown in figure 3.16.

The results are again unsurprising. For low claim probabilities, the
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Figure 3.17: Domain size experiment on synthetic datasets.

expected number of claims for each variable is small. This means it is less
likely for multiple sources to agree on the value for a variable – but this
is one of the main ways in which truth discovery algorithms determine
the true values. As a result we see accuracy rise dramatically as the claim
probability increases. All algorithms achieve the maximal accuracy score
of 1 for pc greater than around 0.5.

The final experiment concerns the domain size, which is the num-
ber of values the artificial sources choose from for their claims – in this
project the domain of possible values is the same for each artificial vari-
able. The minimum domain size is 2; values from 2 to 20 were tested for
this demonstration. Other parameters were kept at the same values as in
the claim probability experiment, with claim probability itself set to 0.1.
Mean accuracy scores for each variable are shown in figure 3.17.

The shape of the graph is similar to the claim probability experiment;
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that is, accuracy increases sharply as domain size increases. Note that
the increase is more dramatic here: mean accuracy increases from around
0.55 to near 1, whereas in the claim probability experiment the minimal
accuracy was already fairly high at around 0.9.

Recall that in the model of synthetic data adopted in this project, a
source s will choose the correct value with probability ps – their reliability
score – when making a claim for a variable, and choose one of the d − 1
incorrect values each with probability 1−ps

d−1 .
Since each incorrect value is chosen with equal probability, the prob-

ability of choosing any particular value decreases as the domain size d is
increased. This means that for larger d, it is less likely that sources will
agree on incorrect values. Stated another way, when d is large agreements
between sources are likely to correspond to the true values, as opposed to
multiple sources making the same mistake. Agreements between sources
is a key indicator for true values, at least as far as the algorithms con-
sidered in this project are concerned, and thus we see higher accuracy as
domain size increases.

3.3.3 Convergence Analysis

Continuing with the evaluation of truth discovery algorithms using the
developed software, we analyse the convergence behaviour of each algo-
rithm. To do this, a synthetic dataset consisting of 1000 sources and 1000
variables was created. Each iterative algorithm was then run for 100 it-
erations, and the distance between the trust score vectors in successive
iterations measured in the `2 norm, i.e. we measure ‖T t−T t−1‖2 for each
time t ∈ {2, . . . , 100}.24 If the trust scores converge – in the sense of a
limit in a metric space as discussed earlier – we should see this distance
become arbitrarily small, and remain so as t→∞.

Figure 3.18 shows the results. Many algorithms, particularly Sums,
Average·Log and TruthFinder, appeared to converge exponentially quickly.
A logarithmic scale is therefore used on the vertical axis to show more
clearly the convergence behaviour.

Unfortunately, it was only possible to run TruthFinder for 3 iterations.
After this the trust score T 3

i for one of the sources i became sufficiently
24 Distance measures other than `2 – namely L1, L∞ and cosine distance – were also

experimented with. The graphs for each looked almost identical to the L1 graph, so they
are not included here.



CHAPTER 3. SOFTWARE IMPLEMENTATION 57

Figure 3.18: Convergence experiment on a large synthetic dataset.

close to 1 that 1 − T 3
i becomes 0 due to a rounding error; we then get

an undefined result when computing log(1 − T 3
i ) in the next iteration as

per the TruthFinder algorithm. More work needs to be done to determine
whether this is an implementation issue or a limitation of TruthFinder
itself. However, in only three iterations the distance between successive
trust scores becomes close to 10−3, which is small enough that one may
consider it to have converged reasonably well.

Another interesting point is the distances for Sums and Average·Log.
They are almost identical up to around 25 iterations, where they start
to diverge. Average·Log then stabilises so that the trust scores remain
constant, and the distance is therefore 0 for the remainder.

In contrast, the distances for Sums remain more or less constant after
30 iterations, but are not 0. Upon closer inspection, the trust scores re-
peatedly oscillate between two (very close together) vectors. This could
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Figure 3.19: Algorithm run time experiments on synthetic datasets.

be caused by numerical instability in the algorithm, or its implementation
in this project. In practical terms this is not problematic, since the distance
between these two vectors in the `2 norm is as small as 10−14.

Finally, observe that Investment and its friend PooledInvestment con-
verge much slower than the other algorithms. The reason for the sharp
drop off in distance for Investment at around 80 iterations is not clear.
Running beyond 100 iterations showed this behaviour continuing; unlike
Sums, the distance appears to decrease consistently towards 0.

3.3.4 Time Complexity Analysis

To conclude the analysis of truth discovery algorithms, we consider algo-
rithm run time as the size of the input dataset varies. Synthetic datasets
were again used, due to the ease of creating datasets with fixed sizes.
‘Size’ has at least three components here: the number of sources, the
number of variables, and the number of claims.

The effect of the number of claims on accuracy was shown above. Its
effect on run time was observed to be marginal, so it is not considered in
detail.

Instead, this test investigates the effects of varying the number of
sources and variables. In principle an algorithm may scale differently
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with respect to these parameters, so they are changed independently in
two separate tests.

The methodology was as follows. First, a large synthetic dataset with
2,000 sources, 2,000 variables and uniform trust distribution was created.
For each parameter (number of sources and number of variables), sizes
from 100 to 2,000 in increments of 200 were tested, whilst the other
parameter was fixed at 500. The large 2,000×2,000 dataset was then re-
duced to the correct size by taking the first n sources and first m variables
in each case. Figure 3.19 shows the results.

Subsetting a large dataset for each trial, as opposed to generating a
new dataset, is hoped to reduce any random effects on timing that may
arise due to the random nature of synthetic datasets. It also allowed larger
sizes to be tested in a reasonable time, since generating many random
claims is time consuming.

In terms of the results, we see that most algorithms exhibit linear
growth with respect to both the number of sources and variables. The
exception is Voting, which is not an iterative algorithm and thus does not
depend in a major way on the size of the dataset. One might expect the
matrix operations involved to take longer for larger matrices, but this ef-
fect is negligible compared to other algorithms.

Note that TruthFinder run time is particularly quick, and grows very
slowly. This may be due to it running for only a few iterations due to the
numerical problems mentioned above.

3.3.5 User Interfaces

As set out in section 3.1.5, three user interfaces were developed for the
system: a documented Python API, a command-line interface, and a web-
based interface.

Python API

A simple example of API usage is shown in figure 3.20. This example
creates a synthetic dataset, runs an algorithm with particular parameters,
and inspects the results. Output of this script is shown in figure 3.21.

Note that the API is the most comprehensive interface, in the sense
that all the implemented functionality is available and can be used in any
combination. For the CLI and web interfaces, some functionality has to be
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Figure 3.20: Python code demonstrating simple use of the API.
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Got results in 0.012 seconds, 23 iterations

Most trustworthy source is 5

Most probable value(s) for variable 4 are: [3.0]

Dataset was:

0.0,0.0,0.0,7.0,3.0,7.0,5.0

3.0,0.0,,,,,2.0

0.0,0.0,0.0,,,,5.0

,2.0,7.0,,,,0.0

,,,7.0,3.0,,

1.0,1.0,5.0,,4.0,,

0.0,,,,3.0,,

,,,,2.0,2.0,

,,,,5.0,,6.0

,,,,,4.0,

0.0,6.0,,,3.0,,0.0

Figure 3.21: Example output of the code in figure 3.20.

left out in the interest of presenting a simple and fit for purpose interface.
For example, it is not possible in the CLI or web interfaces to instantiate
multiple algorithms with separate parameters; this is a niche requirement
and allowing for it would complicate parameter specification for the most
common use cases. However, this is trivial to achieve when using the API.

Further examples of API usage include the code for each of the algo-
rithm analysis experiments discussed throughout this section. Each ex-
periment uses the ‘external’ API interface without requiring modifications
to the core code; this emulates the level of access an end user would have
if using the API interface. These examples can be found in the examples

directory in the source code repository.

Command-Line Interface

In the command-line interface, users can run algorithms on datasets in
CSV format, generate synthetic data, and create graph representations of
datasets. Figure 3.22 shows an example of running an algorithm; this
uses the same dataset, algorithm and parameters as the code of figure
3.20. One can confirm that the results coincide with those shown in figure
3.21.
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Figure 3.22: Example of CLI interface for running an algorithm.

Note that the tail25 command is used to remove the first line of the
synthetic data CSV, which contains the ‘true’ values and is thus not part
of the data itself. This demonstrates a strength of the command-line in-
terface: it can easily be used in conjunction with other programs using
standard shell features such as input and output redirection and variable
substitution.

Not all functionality of the command-line interface can be demon-
strated here. A full description of the available features and options
is given in the help output, which can be shown with truthdiscovery

--help and truthdiscovery <cmd> --help for each of the available sub-
commands, namely run, synth and graph.

25 http://man7.org/linux/man-pages/man1/tail.1.html

http://man7.org/linux/man-pages/man1/tail.1.html
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Web Interface

The finished web interface is shown in figures A.1 to A.7 in appendix A.
These screenshots are included in a separate appendix due to their size
and number.

Figure A.1 shows the basic view presented when a user first loads the
page. At the top, the user selects one or more algorithms from the list. By
default a small dataset is already loaded. Datasets are represented in the
the matrix form described in requirement 2.

Users may edit the cells by simply clicking them, and buttons are avail-
able to add and remove sources and variables. The ‘trash’ icon in the lower
right allows all entries to be cleared.

This interactive matrix format has proved to be successful for manual
entry of small datasets. For example, I used it extensively when analysing
the behaviour of algorithms for the theoretical work of chapter 4. It is
not suitable for datasets of any significant size, however; it is particu-
larly limited by the number of variables (displayed horizontally) that can
comfortably be shown at one time. It also becomes fiddly to enter many
entries when one has to click each individual cell. Future work could
improve this by implementing keyboard shortcuts to navigate the matrix.

It is also possible to load datasets from CSV format, as shown in figure
A.2. The reverse conversion – exporting the constructed matrix to CSV –
was not implemented; this is a clear improvement that can be made in
future work.

As a final point on data entry, note that there is a dropdown menu for
‘preset’ datasets. I created four small datasets exhibiting different prop-
erties: a ‘typical’ dataset with mixture of agreements and disagreements,
one where all sources are in agreement bar one, one consisting of two
disjoint sets of sources whose claims do not overlap, and one where no
sources agree on any variable. This allows users to quickly get started
with the site without having to construct their own dataset.

Another aspect of user input is algorithm parameters. Parameter op-
tions are hidden behind an ‘advanced options’ checkbox, since it is ex-
pected that most users will use the default parameters. Figure A.3 shows
the options displayed when this box is checked. Algorithm parameters are
specified by a free-text field using the same format as for the command-
line interface. This is a weakness of the interface; a graphical view would
be more appropriate here.
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Once the algorithms, dataset and parameters are chosen, the user runs
the algorithms by clicking the ‘Run’ button. An example of how results are
displayed is shown in figure A.4.

First, the run-time and number of iterations are displayed. Beneath
this there are four sections: source trust scores, claim belief scores, graph
representation and animation. Each section can be collapsed and ex-
panded by clicking its title.

The trust and belief score sections are straightforward: they are dis-
played in a tabular format, with the maximum scores displayed in bold.
Note that the rows can be sorted by score (ascending or descending) or
source/variable ID by clicking the table headings.

Note that each score has an additional number in brackets beside
it. This shows the change in trust/belief score compared to the previ-
ous dataset. Displaying these changes is optional, and can be controlled
by the checkbox labelled ‘Compare against previous results’ which can
be seen in figure A.1. This was particularly useful when experimenting
with algorithms on hand-crafted datasets to see how they react to small
changes in the dataset, and also to see how different algorithms compare
for the same dataset. Note that comparison is not available when running
multiple algorithms simultaneously, since it is not clear which results are
being compared against.

The results of running multiple algorithms is shown in figure A.5. Ob-
serve that a tabbed interface is used, so that only one set of results can be
seen at a time. This was useful for comparing results between algorithms
– this was a major use case identified in section 3.1. One may collapse the
sections of results that are not of interest and quickly change between the
tabs to see any changes.

As for the graph and animation sections in the results, examples are
shown in figures A.6 and A.7 respectively. A slider and buttons beneath
the animation frame allows the user to control playback; arrow keys can
also be used. Future work could implement automatic playback of ani-
mations – presently the user must control the slider themselves to see a
smooth animation.

3.3.6 Testing

Testing was an important consideration throughout the practical compo-
nent of this project. Several use cases involve users extending or otherwise
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interacting with the code, which becomes extremely difficult if the code is
buggy or unreliable. Thorough testing is therefore required to ensure, as
far as possible, that the code behaves correctly.

The most basic form of testing involved manually checking the be-
haviour of the code during development. For example, after implementing
running algorithms until convergence, I experimented with the threshold
level and checked that the number of iterations performed changed ac-
cordingly.

Clearly this kind of ad-hoc testing is not sufficient. It is impractical to
perform such tests for all areas of the software after every code change;
this means it is easy for bugs to creep in when making future changes.

Moreover, manual inspection is not always enough to spot errors in
output. For the truth discovery algorithms implemented here, it is surely
impossible for one to know the expected results of an algorithm before
running it through software. In this case looking at the results by eye will
most likely not provide any useful information regarding the correctness
of the implementation. Even if one could predict the results of an algo-
rithm, the trust and belief scores are often floating point numbers with
an excess of 10 digits after the decimal point: checking these numbers
manually would be extremely challenging and error-prone.

Automated testing was used heavily to address these issues. This al-
lowed many tests covering broad parts of the code to be run quickly with-
out manual intervention, and allowed the tests to be far more compre-
hensive than manual testing could be. For these reasons and others, au-
tomated tests are now standard practise in software development.

I intended to adopt a test-driven development workflow, where tests are
developed before real code. This is hoped to force one to write tests that
cover the actual functionality required, rather than testing the specific im-
plementation. I achieved this semi-successfully, often writing a basic test
first and spotting gaps in the test coverage after the code implementation.

At any rate, the project benefits from a comprehensive suite of 150
unit tests covering all aspects of the Python code. Test coverage, which is
the percentage of lines of code that are run during the execution of the
tests, is 100% as measured using the coverage library26 (after manually
excluding lines that ought not to run during tests, such as starting the
web server, reading command-line arguments etc.). Note that 100% test
coverage does not necessarily mean that the tests are sufficient to find all
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Figure 3.23: Example of a unit test for constructing the source-claims matrix for a
dataset.

potential bugs in the code, but it is nonetheless a desirable statistic.
As mentioned, pytest was used to implement and run the tests. The

complete test output is shown in B.
Most of the automated tests can be described as unit tests, which check

the behaviour of a small part of the code (a ‘unit’) in isolation. In my case
this usually involved writing multiple tests for each class and method. An
example is shown in figure 3.23. This test checks that the source-claims
matrix M is constructed correctly when a dataset is loaded.

A pattern I used throughout development was to first write tests for
the expected behaviour of a class with ‘correct’ inputs, then consider ‘edge
cases’, and finally consider invalid inputs to check that error checking is
performed as appropriate.

26 https://coverage.readthedocs.io/en/v4.5.x/

https://coverage.readthedocs.io/en/v4.5.x/
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The example in figure 3.23 illustrates this to some extent. The first six
claims follow a predictable format: they deal with one variable at a time
(‘wind’ for the first four, ‘rain’ for the next two), with a mixture of repeated
values and distinct ones. These constitute the obviously ‘correct’ parts of
the input. Edge cases are thrown in for the remaining claims. First, the
value ‘wet’ is repeated, but for a different variable; this is perfectly valid
input, but a näıve implementation could incorrectly fail to distinguish be-
tween the claims in this case. The variables are also introduced out of
order with the final claim. Again, this is an attempt to ‘trick’ the code in
order to catch errors that may occur if one does not consider these edge
cases.

Erroneous input is handled in a separate test which is not shown in
figure 3.23. Test cases here include invalid datasets where a source makes
multiple claims for a variable.

In addition to unit tests, regression tests were used for testing the im-
plementation of algorithms. Regression tests are designed to ensure code
behaves correctly over time as new developments are made. This was par-
ticularly important for the truth discovery algorithms themselves, where
it is not at all obvious if an algorithm has been implemented correctly by
looking at its results against a dataset.

To create the regression tests, each algorithm was run against a large
synthetic dataset as soon as it was implemented. The results were then
stored in a file, and a test created to re-run the algorithm on the same
dataset and compare against the stored results. Any inadvertent changes
resulting in a change in behaviour for a particular algorithm are then
caught the next time the tests are run. Note that the regression tests rely
on the algorithms being correct at the time of their initial implementation;
this was checked separately in unit tests.

Indeed, this proved useful on a few occasions throughout develop-
ment, where accidental errors in the algorithm code caused non-obvious
errors in results. These were fortunately caught by the regression tests
and quickly rectified.

Besides the Python code, JavaScript was used for the interactive el-
ements of the web interface. Unfortunately, no automated tests were
produced for the JavaScript code. Manual testing was performed dur-
ing development and a final run through and test of all functionality was
performed on completion, but this was the extent of testing for the web
interface. On the one hand, the core backend Python code is thoroughly
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tested, so the web interface testing would only need to cover the inter-
active user interface aspects, such as dataset entry, displaying of results
and so on. Automated testing for such graphical components is much
more challenging than for the Python code, and would have required sig-
nificant time investment. On the other hand, AngularJS, the JavaScript
framework used, is built with with testability in mind, and various tools
exist to simplify automated testing of Angular applications. Tests could be
added in future work to address this.

3.3.7 Evaluation against Requirements

To conclude this section, the software as a whole is evaluated with respect
to the requirements and use cases of section 3.1.

The table in figure 3.24 shows the status of each requirement in the
finished system. Some requirements are tested in several ways; for ex-
ample generating animations is covered by unit tests, but the animations
also inspected visually. Requirements with a subjective component (e.g.
support for ‘large’ datasets) are indicated with asterisks.

The table shows that most requirements were indeed met, and for
the most part verified by unit tests. Note that most of the unit tested
requirements have multiple associated tests, and that the unit tests go far
beyond the high-level requirements listed.

Requirement 8, which relates to the handling of ‘large’ datasets, was
not met. Whilst it was possible to run algorithms on a reasonably large
dataset (see section 3.3.1), it took far too long for the dataset to load.
It is unclear where the bottleneck in dataset loading lies; this could be
investigated in future work.

Requirement 15 stated that time, memory and iteration statistics should
be returned with the results of an algorithm. This is only partially com-
plete in the finished system: no memory usage information is returned.
Defining memory usage proved to be challenging, and from initial inves-
tigations it seemed that profiling memory usage whilst an algorithm runs
would have a negative impact on performance. Memory usage was omit-
ted for these reasons. Note that the other aspects of the requirement,
namely time and iteration statistics, were met and verified with unit tests.

Naturally requirement 17, which requires that time, memory and iter-
ation statistics can be compared between results, was also only partially
met.
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Req. number Unit tested Manually tested Partially met Not met
1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X*
9 X
10 X
11 X
12 X
13 X*
14 X
15 X X
16 X
17 X X
18 X X
19 X X
20 X*
21 X X*
22 X

Figure 3.24: Status of each of the requirements in the finished implementation.

The use cases identified at the start of this section are supported to
varying degrees in the final implementation. The main goals for the ‘prac-
titioner’ use case were to run algorithms on real-world datasets and eval-
uate them with respect to their performance. It has been seen that large
real-world datasets are not well-supported in the system due to the ex-
cessive time it takes to load them. This limits the system’s usefulness in
practical applications of truth discovery, especially if real-time results are
required.

Evaluation is supported reasonably well; the demonstrations through-
out this section show how the system can be used to evaluate and compare
algorithms with respect to various metrics, such as accuracy on synthetic
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datasets and run-time. One shortcoming is that analysis of memory usage
is not possible.

The ‘algorithm developer’ use case requires users to be able to eas-
ily extend the codebase to implement new algorithms with ease. This is a
subjective goal, and it is difficult for the author of some software to impar-
tially comment on its usability from the perspective of others. Neverthe-
less, I feel that this goal was mostly achieved, due to the clean separation
in the code between the public API and implementation details. The code
is also well-documented, well-tested, and includes numerous examples of
its usage.

Finally, the system was intended to be helpful as a tool for theoretical
truth discovery work. The web interface proved particularly useful for this
in my own theoretical work (see chapter 4), where I often needed to run
a particular algorithm on small datasets to get a feel for its behaviour in
different scenarios. The counter-example used to prove that Sums does
not satisfy a certain independence property (see theorem 2) was found
using the web interface, and the figures demonstrating it were generated
using the Python API.

3.4 Future Work

This section discusses unrealised ideas and potential future work for the
software framework.

Perhaps the most obvious area for improvement is the selection of al-
gorithms available. Truth discovery has been studied extensively in the
literature and many algorithms proposed, yet only five are implemented
here. It would be interesting to implement algorithms of different types;
for example, algorithms based on statistical models (e.g. [33, 38]) are
absent.

Real-valued variables could also be handled in future work. This im-
plementation treats values categorically – 3.001 is completely distinct
from 3.002. In practise, however, datasets often contain real-valued vari-
ables whose claimed values may be close but not exactly equal. In this
case the values can be ‘quantised’ to discrete intervals before truth discov-
ery is applied. Future work could implement this inside the framework to
reduce the effort required from end users.
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Another area that could be greatly expanded upon is synthetic data
generation. The model of synthetic data adopted here is a simple one, and
could be extended in various ways. For example, each variable could have
its own domain of possible values, instead of a fixed constant domain; this
would more accurately reflect real-world datasets, where variables have
their own unique characteristics.

The distribution of claimed values could also vary between variables:
currently all source incorrect values uniformly at random. This artificially
prevents certain algorithms performing as well as they might do on real
data, where similarity between claimed values can be used to great effect
– for example, implications between claims in TruthFinder.



Chapter 4

Theoretical Analysis

This chapter presents and analyses a formal theoretical framework for
truth discovery. First, the approach taken is discussed and justified.

4.1 Approach

In the previous chapters, we have motivated the need for a general the-
oretical framework for truth discovery. To work towards actually con-
structing one, it is necessary to set out exactly what such a framework
will consist of, and what features and properties are required for it to be
useful.

The main goal of developing the framework is to set out rigorous defi-
nitions for what truth discovery is, which allows the current situation to be
modelled whilst also permitting a more general view. The key definitions
will therefore be

• What is the ‘input’ to truth discovery? The input has been described
in terms of sources, facts, objects and conflicting claims, but this
needs to be formulated mathematically.

• What is the ‘output’? We have stated that the output is most com-
monly trust and belief scores for sources and facts, according to ex-

72
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isting work in the literature. However our aim is to study truth
discovery in full generality, and not just the algorithms already in
existence. Therefore a more general view could be taken if desired,
so long as it can still model existing algorithms.

With these definitions in place, a truth discovery algorithm is simply
a mapping from the space of inputs to outputs. This abstracts away the
process of performing truth discovery so that ‘algorithm’ is not the correct
term to use. We opt for truth discovery operator to describe a mapping
from inputs to outputs.

There are several criteria against which to judge the usefulness of the
developed framework.

• Ability to model existing approaches: We aim to find a unified
framework that allow as many existing algorithms in the literature
as possible to be represented.

• Simplicity: the key definitions should be easy to interpret, and
should relate to intuitive notions of truth discovery in a clear way.

• Flexibility: we wish to prove properties of operators, compare dif-
ferent operators, and develop axioms, so the framework should be
easy and flexible to work in.

• Generality: the framework should be general and ‘unopinionated’
enough to be useful as foundations for future work, i.e. it should not
rely on specific ideas and approaches to performing truth discovery.
It should also be general in the sense of facilitating easy comparison
between truth discovery and related areas in the literature. This will
allow ideas in these areas to be applied to truth discovery, e.g. many
axioms from social choice could be translated to truth discovery.

Once the framework has been established, we aim to develop axioms
for operators. In line with axiomatic foundations for other problems, the
axioms should represent intuitively desirable properties that a ‘reasonable’
operator should satisfy. The power of the axiomatic approach is to then
consider multiple axioms together; the types of results attained include
impossibility results, where it is proved that no operator1 can satisfy a set
of axioms, and representation theorems, where a set of sound and complete
axioms are found for a particular operator. For example, in the context of
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ranking systems, the authors in [3] show that two seemingly complemen-
tary and desirable axioms cannot be satisfied simultaneously, which has
implications when deciding which ranking system to use in practise.

Requirements for ‘good’ axioms include having simple interpretations
and representing desirable properties in some way or another.

4.1.1 Overview of Approach

We now give an overview and justification of the approach to develop-
ing the theoretical framework, before the formal definitions are given in
section 4.2.

For input to a truth discovery problem, it was noted in section 2.2 that
the following form is applicable to many approaches in the literature: we
have a set of sources, facts and objects, and sources claim facts for objects.

To represent this formally, a graph-theoretic representation is chosen.
Nodes will be sources, facts and objects. Edges between nodes repre-
sent the obvious relations: an edge from a source to a fact represents the
source claiming that fact, and an edge from a fact to an object indicates
the object the fact relates to. Setting this up in graph theory allows for
simple interpretation, and allows concepts in graph theory to be usefully
applied to describe properties of the input (for example, the notion of
connected components is key in axiom 6).

Using a well established tool such as graph theory is hoped to also pro-
vide flexibility for future refinements to consider more complex problems:
notions such as weighted edges, annotated nodes etc. could be used to
conveniently describe additional properties of the input.

Finally, a graph representation is already used in the related area of
ranking systems [2, 3]. Using a similar set up allows comparison between
the two areas.

For output, consider the two main ideas discussed in section 2.2: as-
signing each fact a score and selecting a single true fact for each object.
Since the latter is a special case of the former, the former is more suitable
for a general theory of truth discovery.

Note that assigning a numeric score to each source and fact in particu-
lar induces an ranking of the sources and facts. We argue that the essence

1 We use ‘operator’ as a blanket term to refer to social choice functions, ranking
systems, annotation aggregators etc.



CHAPTER 4. THEORETICAL ANALYSIS 75

of truth discovery lies more in this induced ranking that the particular
numerical scores, and will therefore define the output of truth discovery
as a pair of rankings (precisely, total preorders) on the set of sources and
facts.

Indeed, when applying truth discovery methods to determine which
sources to trust and which facts to believe, one is interested in which
sources/facts are more believable than others, not in the particular nu-
meric values produced by an algorithm. Additionally, the numeric values
produced often do not have any semantic meaning [27], which prevents
inter-algorithm comparison. The induced rankings can therefore act as a
bridge between results from different algorithms.

A similar view is also taken in social choice and the axiomatic theory of
ranking systems, where rankings instead of numeric scores are the main
objects of interest. Taking the same approach here highlights the similari-
ties between truth discovery and these areas, and allows concepts in these
areas to be carried over into truth discovery.

Nevertheless, to model in their entirety the algorithms that produce
numeric scores, it will be possible to define such operators in the frame-
work as more general objects, but restrict our attention mainly to the
ranking-output operators.

4.2 A Framework for Truth Discovery

In this section we define formally the graph-theoretic framework for truth
discovery, and set out the central problem of truth discovery via the def-
inition of a truth discovery operator. We then develop axioms (desirable
properties) for such operators, and prove some basic properties regarding
them. Finally, we consider how to represent real-world truth discovery
algorithms in the developed framework, focussing specifically on Sums
[27].

First we state some standard definitions and notation.

4.2.1 Standard Definitions and Notation

Definition 1. A preorder on a set X is a binary relation � that is reflexive
and transitive:

1. x � x for all x ∈ X (reflexivity)
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2. If x � y and y � z, then x � z for all x, y, z ∈ X (transitivity)

A total preorder is a preorder that is complete: for all x, y ∈ X, x � y
or y � x. L(X) is the set of all total preorders on X.

The strict order induced by � is ≺ where x ≺ y if and only if x � y but
not y � x. Note that ≺ is irreflexive, transitive (and hence asymmetric),
and is not complete.

The equality predicate associated with � is ', where x ' y if and only
if x � y and y � x. Note that ' is an equivalence relation on X.

Definition 2. A permutation of a set X is a bijective mapping X → X. We
use cyclic notation for permutations: π = (a, b, c) is the mapping π(a) = b,
π(b) = c, π(c) = a, and π(x) = x for x /∈ {a, b, c}. Juxtaposition of cycles
denotes function composition.

Definition 3. Two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic
if there is a bijective mapping φ : V → V ′ such that (u, v) ∈ E ⇐⇒
(φ(u), φ(v)) ∈ E ′.

Definition 4. Let G = (V,E) be an undirected graph, and define a rela-
tion ∼ on V by u ∼ v iff there is a path from u to v in G (including the
zero-length path when u = v). It is easily checked that ∼ is an equiva-
lence relation. A connected component of G is an induced subgraph of an
equivalence class of ∼.

Notation. For sets X and Y , Y X denotes the set of all functions X → Y .

4.2.2 Truth Discovery Definitions

We consider fixed finite and mutually disjoint sets S, F and O, called the
sources, facts and objects respectively. All definitions and axioms will be
stated with respect to these sets.

Definition 5. A truth discovery network is a directed graph N = (V,E)
where V = S ∪F ∪O, and E ⊆ (S ×F) ∪ (F ×O) satisfies the following
properties:

1. Each f ∈ F has a unique successor node in O, denoted obj(N, f)
(i.e. each fact relates to a single object).
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2. For s ∈ S and o ∈ O, there is at most one directed path from s to o
(i.e. sources can only claim one fact per object).

3. (S × F) ∩ E is non-empty (i.e. at least one claim is made).

We will say that s claims a fact f when (s, f) ∈ E. Let N denote the set of
all truth discovery networks.

Remark. Note that the definition above does not rule out a source s making
no claims, a fact f being claimed by no sources, or an object o having no
associated facts or sources.

In the special case where each object has exactly two associated facts, the
objects can be seen as binary variables taking one of two values, e.g. true or
false. The truth discovery network is then similar to a set of judgements in
judgement aggregation [13] for an agenda consisting only of propositional
variables.

Notation. For convenience, for a network N = (V,E), define:

facts(N, s) = {f ∈ F : (s, f) ∈ E}
facts(N, o) = {f ∈ F : (f, o) ∈ E}
src(N, f) = {s ∈ S : (s, f) ∈ E}
src(N, o) = {s ∈ S : ∃f ∈ F : (s, f), (f, o) ∈ E}

Definition 6. A truth discovery operator T is a mapping T : N → L(S) ×
L(F), i.e. T assigns to each truth discovery network N a pair of total
preorders T (N) = (vTN ,�TN) on the sets S and F respectively.

s1 vTN s2 means s2 is ranked as more trustworthy than s1 in the network
N according to T ; f1 �TN f2 means f2 is ranked as more believable than f1.

In practise, real-world truth discovery algorithms do not usually out-
put a ranking of sources and facts directly, but instead assign each source
a numeric trust score, and each fact a belief score. This is captured in the
following definition.

Definition 7. A numerical truth discovery operator T is a mapping T :
N → RS ×RF , i.e. T assigns to each truth discovery network N functions
tN : S → R (referred to as the source trust mapping) and bN : F → R
(referred to as the fact belief mapping).
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Remark. Any numerical truth discovery operator T naturally induces a
truth discovery operator T ′, where for any truth discovery network N we
define

s1 vT
′

N s2 ⇐⇒ tN(s1) ≤ tN(s2)

f1 �T
′

N f2 ⇐⇒ bN(f1) ≤ bN(f2)

for s1, s2 ∈ S and f1, f2 ∈ F .

In this work we deal primarily with truth discovery operators as de-
fined in definition 6, instead of working directly with numeric trust and
belief scores as in definition 7. This is due to the reasons dicussed in sec-
tion 4.1.1; namely that, from a theoretical point of view, we are interested
in the qualitative ranking of sources and facts rather than quantitative val-
ues.

One disadvantage to this approach is that whilst we can tell whether
or not s1 is more trustworthy than s2, we cannot tell by how much. For
example, consider two numerical operators T and T ′ and S = {s1, s2}
such that tN(s1) = 0.5, tN(s2) = 0.51, and t′N(s1) = 0.01, t′N(s2) = 0.99.
Both operators induce the same ranking on S, yet T considers the two
sources to have similar trust values while T ′ considers s2 to be much more
trustworthy than s1.

4.2.3 Axioms

The fact-believability component of truth discovery can be seen as a spe-
cial case of voting in the theory of social choice [41], where agents are
sources and alternatives are facts. Each source then ranks the facts it
claims above all other facts, and ranks its claimed facts equally.2 Several
axioms for voting rules from this theory can be adapted to truth discovery,
and we do so presently.

Symmetry and Dictatorship

Definition 8. Two truth discovery networks N and N ′ are equivalent if
there is a graph isomorphism π between them that preserves sources, facts
and objects:

2 Note that the formulation of social choice must allow for agents to have weak
preferences for alternatives, where ties are allowed.
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1. π(s) ∈ S for all s ∈ S

2. π(f) ∈ F for all f ∈ F

3. π(o) ∈ O for all o ∈ O

In such case we write π(N) for N ′.

Figure 4.1 shows an example of two equivalent networks.
The first axiom states that the ordering of sources and facts should not

depend on the ‘names’ of the sources, facts and objects in the input.

Definition 9. Let T be a truth discovery operator. T satisfies symmetry if
for any equivalent truth discovery networks N and N ′ = π(N), we have

s1 vTN s2 ⇐⇒ π(s1) vTN ′ π(s2)

and
f1 �TN f2 ⇐⇒ π(f1) �TN ′ π(f2)

T satisfies source-symmetry if both the above statements hold in cases
where π only permutes sources, i.e. π(f) = f and π(o) = o for all f ∈ F
and o ∈ O. Fact-symmetry and object-symmetry are defined similarly.

Axiom 1 (Symmetry). An operator T should satisfy symmetry.

Source-symmetry is analogous to anonymity in classical social choice,
where all voters are treated identically, and fact and object symmetry are
analogous to neutrality, where the alternatives being voted on are treated
identically [41].

Note that source-symmetry does not mean that sources are treated
equally per se, since some sources are presumed to be more trustworthy
than others (this is more or less the central premise of truth discovery).
Instead it means that sources are judged solely by the facts that they claim,
not their identities.

Proposition 1. T satisfies symmetry if and only if it satisfies source, fact
and object symmetry.

Proposition 2. If T satisfies source-symmetry and facts(N, s1) = facts(N, s2)
in some network N , then s1 'TN s2.
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Figure 4.1: Example of two equivalent truth discovery networks. Here the isomor-
phism between the left and right networks is π = (S, T, U)(A,B). The colours show
that the structure of the right network is the same as the left, just with different
‘names’ for the nodes.

Similarly, if T satisfies fact-symmetry and src(N, f1) = src(N, f2),
obj(N, f1) = obj(N, f2), then f1 ≈TN f2.

That is, any two sources making identical claims are ranked equally, and
any two facts for the same object with identical support from sources are
ranked equally.

All missing proofs are presented in appendix C.
In some sense the opposite of source-symmetry, where the identities

of the sources are irrelevant and only the structure of the truth discovery
network is important, is a situation where only the identities of the sources
are considered.

Definition 10. A source s∗ ∈ S is authoritative for a network N = (V,E)
with respect to an operator T if s vTN s∗ for all s ∈ S, and (s∗, f ∗) ∈ E
implies f �TN f ∗ for all f ∈ F .

In other words, s∗ is more (or equally) trusted than all other sources,
and its facts are more (or equally) believable than all others.

We also define a strict version: s∗ is strictly authoritative if additionally
s @T

N s∗ for all s 6= s∗, and f ≺TN f ∗ for all f, f ∗ ∈ F such that (s∗, f ∗) ∈ E
and (s∗, f) /∈ E.

An operator T is a dictatorship if there is a source s∗ ∈ S (the dictator)
that is authoritative for all networks, and T is a strict dictatorship if there
is a source s∗ ∈ S that is strictly authoritative for all networks.
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Axiom 2 (Non-dictatorship). An operator T should not be a dictatorship.

As noted above, source-symmetry and dictatorship are conceptually
at odds with one another. This is expressed formally in the following
proposition, which essentially shows that only trivial operators can satisfy
both properties.

Proposition 3. If an operator T is both source-symmetric and a dictatorship,
then for any network N :

1. All sources are ranked equally

2. If f1 is claimed by at least one source in N , then f2 �TN f1 for all facts
f2.

In particular, there is no operator that is both source-symmetric and a
strict dictatorship.

Example 1. A trivial operator that satisfies symmetry and dictatorship is
one that always ranks all sources and facts equally: Ttriv(N) = (S2,F2).

If we restrict N to those networks where all facts are claimed by
at least one source, then proposition 3 shows that T satisfies source-
symmetry and dictatorship if and only if T = Ttriv.

Without this restriction, facts not claimed by any source may be ranked
strictly below other facts. Indeed, consider T defined as follows. For
any network N write F+ = {f ∈ F : src(N, f) 6= ∅}, and define T by
s1 'TN s2 for all s1, s2 ∈ S, and

f1 �TN f2 ⇐⇒ f2 ∈ F+ or f1 /∈ F+ (f1, f2 ∈ F)

T is trivially a dictatorship for any s∗ ∈ S. It can be easily checked
that �TN is a well-defined total preorder, and that T is also symmetric.
However any fact in F \ F+ ranks strictly below any fact in F+.

Dictatorship requires there to be a fixed source that is authoritative in
all networks. A weaker form of dictatorship, which is more compatible
with symmetry, is where the authoritative source may depend on N .

Definition 11. A truth discovery operator T is a generalised dictatorship if
for every network N there exists a source sN ∈ S that is authoritative for
N with respect to T . A generalised strict dictatorship is defined similarly.
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Clearly a dictatorship is also a generalised dictatorship.

Example 2. An operator that is both symmetric and a generalised dicta-
torship is the numerical operator T defined as follows. For any truth dis-
covery networkN , letQN = {s ∈ S : |facts(N, s)| = maxx∈S |facts(N, x)|}
be the set of sources making the maximal number of claims, and set

tN(s) =

{
1 if s ∈ QN

0 otherwise

bN(f) =

{
1 if src(N, f) ∩QN 6= ∅
0 otherwise

Clearly any source in QN is authoritative.
To show symmetry, let N and π(N) be equivalent networks. Let s ∈ S.

First note that f ∈ facts(N, s) iff π(f) ∈ facts(π(N), π(s)) by defi-
nition of equivalent networks, and in particular the restriction of π to
facts(N, s) is a bijection into facts(π(N), π(s)); hence |facts(N, s)| =
|facts(π(N), π(s))|. Also, since π restricted to S is a bijection into S, we
have

max
x∈S
|facts(N, x)| = max

x∈S
|facts(π(N), π(x))|

= max
x∈S
|facts(π(N), x)|

and so

s ∈ QN ⇐⇒ |facts(N, s)| = max
x∈S
|facts(N, x)|

⇐⇒ |facts(π(N), π(s))| = max
x∈S
|facts(π(N), x)|

⇐⇒ π(s) ∈ Qπ(N)

We see that tN(s) = tπ(N)(π(s)) for any s ∈ S.
Now let f ∈ F . Note that s ∈ src(N, f) iff π(s) ∈ src(π(N), π(f)).

Using this fact and s ∈ QN ⇐⇒ π(s) ∈ Qπ(N), it is easy to see that
src(N, f)∩QN 6= ∅ iff src(π(N), π(f))∩Qπ(N) 6= ∅, i.e. bN(f) = bπ(N)(π(f)).

Finally this means, for any s1, s2 ∈ S and f1, f2 ∈ F :

s1 vTN s2 ⇐⇒ tN(s1) ≤ tN(s2)

⇐⇒ tπ(N)(π(s1)) ≤ tπ(N)(π(s2))

⇐⇒ π(s1) vTπ(N) π(s2)
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and similarly f1 �TN f2 iff π(f1) �Tπ(N) f2. Hence T is symmetric.

Note that to be a generalised dictatorship, an operator needs only to
rank facts claimed by the most trusted source(s) above all other facts.
One may argue that this is not necessarily an undesirable property, since
the most trusted source presumably claims believable facts, which should
rank highly.

However, the operator in example 2 has the additional (perhaps unde-
sirable) property that the ranking is ‘binary’: it is two-level ranking where
all non-authoritative sources rank equally to each other and strictly be-
low the authoritative ones. This behaviour is captured in the following
definition.

Definition 12. A truth discovery operator T is a binary generalised dicta-
torship if for every network N there is a set of sources QN ⊆ S such that,
with

tN(s) =

{
1 if s ∈ QN

0 otherwise

bN(f) =

{
1 if src(N, f) ∩QN 6= ∅
0 otherwise

it holds that
s1 vTN s2 ⇐⇒ tN(s1) ≤ tN(s2)

f1 �TN f2 ⇐⇒ bN(f1) ≤ bN(f2)

Remark. If T is a binary generalised dictatorship, it clear that for each
network N , each source in QN is authoritative.

In such case the orderings vTN and �TN are fully determined by the choice
of QN . Therefore a binary generalised dictatorship can be identified with
a mapping N → 2S that selects the authoritative sources for each truth
discovery network.

Axiom 3 (Non- binary generalised dictatorship). An operator T should not
be a binary generalised dictatorship.

Proposition 4. Non-dictatorship and non- binary generalised dictatorship
are independent.
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Unanimity

The next axioms formalise the idea that if all sources are in agreement
about the status of a fact, then a truth discovery operator should respect
this in its verdict. Two obvious ways in which sources can be in agreement
are when all sources believe a fact is true, and when no sources believe a
fact is true.

Axiom 4 (Unanimity). For any truth discovery network N , src(N, f) = S
implies f ′ �TN f for all f ′ ∈ F .

Axiom 5 (Groundedness). For any truth discovery network N , src(N, f) =
∅ implies f �TN f ′ for all f ′ ∈ F .

That is, a fact cannot do better than to be claimed by all sources when
T satisfies unanimity, and cannot do worse than to be claimed by no
sources when T is grounded.

Note that we do not require strict inequalities here, so as to not be too
restrictive. For unanimity in particular, requiring f to rank strictly above
all other facts would require T to choose a highest-ranking fact arbitrarily
in the case where there are multiple facts claimed by all sources.

Unanimity is similar to the weak Paretian property [10] in social choice,
which states that whenever each individual prefers an alternative a over b,
the social preference order prefers a over b also. It can also be compared
to unanimity in judgement aggregation [13].

Axioms similar to groundedness have been proposed for collective an-
notation (e.g. see groundedness in [17])

Example 3. The majority voting operator, which ranks a fact by the num-
ber of sources claiming it, satisfies unanimity and groundedness. Indeed,
define Tvote by s1 'TvoteN s2 for all s1, s2 ∈ S, and

f1 �TvoteN f2 ⇐⇒ |src(N, f1)| ≤ |src(N, f2)|

If src(N, f) = S then for all f ′ we have src(N, f ′) ⊆ S = src(N, f),
so f ′ �TN f . Also, if src(N, f) = ∅ then src(N, f) ⊆ src(N, f ′) for all f ′,
so f �TN f ′. Hence Tvote is unanimous and grounded.

A consequence of groundedness is that any fact ranking strictly above
all others must have been claimed by at least one source (assuming |F| >
1).
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Figure 4.2: Network demonstrating a case where we do not wish for an IIA-type
axiom to hold.

Proposition 5. Unanimity and groundedness are independent.

Independence

In social choice, the ‘Independence of Irrelevant Alternatives’ (IIA) axiom
[6] requires that the relative ranking of two alternatives A and B depends
only on the individual rankings of A and B, and not on any ‘irrelevant’
alternative C. That is, if the individual voter preferences are changed
such that the ranking of A versus B remains the same for each voter, the
ranking of A and B in the social ranking remains unchanged.

To consider whether a similar axiom should be adopted for truth dis-
covery, consider facts A and B in the network shown in figure 4.2. A
has support from source S only, who is not in agreement with any other
sources, whilst B has support from T , who agrees with both U and V on
facts C and D. For this reason, it may be reasonable to expect that T is
more trustworthy than S, and therefore B is more believable than A.

Directly translating IIA to this situation, we would require that the
ranking of A and B is unchanged if, say, we removed T ’s claims for C and
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Figure 4.3: Network where some notion of independence may be applied.

D (which are ‘irrelevant’), and instead had S make these claims. However
the intuition above suggests that the ranking of A and B should actually
be reversed in this case, despite the individual judgements on A and B
remaining unchanged. For this reason, we argue that a more subtle notion
of independence is required.

The issue in figure 4.2 is that C and D are not entirely irrelevant to A
and B, since they are connected indirectly via sources that make claims
for both objects O and P (namely, source T ). Consider removing these
indirect links, as show in figure 4.3. In this case it can be argued that
C and D truly are irrelevant to A and B, and so changes to the network
outside of S, T , A, B and O should not affect the ranking of A and B.

This idea can be generalised by noting that two nodes are ‘relevant’
to each other (perhaps indirectly) if they lie in the same connected com-
ponent of the network (where we consider the connected components of
the undirected version of the graph). A suitable independence axiom is
therefore to require that changes outside a connected component do not
affect the ranking of sources and facts within that component. A precise
statement is given below.
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Axiom 6 (Independence Of Irrelevant Stuff). For any truth discovery net-
works N1, N2 with a common connected component G, the restrictions of
vTN1

and vTN2
to G ∩ S are equal, and the restrictions of �TN1

and �TN2
to

G ∩ F are equal.

Independence of irrelevant stuff requires that s1 vTN1
s2 if and only if

s1 vTN2
s2. A weaker version is to require only that the ranking of s1 and

s2 in N1 is not reversed in N2, not necessarily that the ranking if the same
(for example, a strict inequality in N1 may become weak in N2).

Axiom 7 (Weak Independence Of Irrelevant Stuff). For any truth discovery
networksN1,N2 with a common connected componentG and for any s1, s2 ∈
G ∩ S and f1, f2 ∈ G ∩ F :

s1 @
T
N1
s2 =⇒ s1 vTN2

s2

f1 ≺TN1
f2 =⇒ f1 �TN2

f2

Clearly axiom 6 implies axiom 7.

Coherence

A guiding principle of many truth discovery approaches is that facts claimed
by trustworthy sources should receive high belief, and sources claiming
high belief facts should be seen as trustworthy – the trust and belief rank-
ings should cohere with one another in this sense. The following axiom
aims to formalise this in a specific case where it is possible to compare
facts for two sources in a straightforward way (and similarly for facts). Its
form is inspired by transitivity axioms for ranking systems [3].

Axiom 8 (Coherence). Suppose N is a truth discovery network and s1, s2 ∈
S are such that there is a bijective mapping φ : facts(N, s1)→ facts(N, s2)
with f �TN φ(f) for all f ∈ facts(N, s1). Then s1 vTN s2.

That is, if the facts claimed by two sources can be paired up such that the
fact claimed by s1 always ranks beneath the fact claimed by s2, then s1 ranks
beneath s2.

Similarly, if there are facts f1, f2 ∈ F and a bijection φ : src(N, f1) →
src(N, f2) such that s vTN φ(s) for all s ∈ src(N, f1), then f1 �TN f2.
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Monotonicity

The axioms considered so far have largely dealt with the output of a truth
discovery operator for one input network at a time, or for two networks
which are structurally similar. Another dimension to the axiomatic ap-
proach is to consider how the output of an operator is effected by a change
in the input to modify it in a particular way.

The following axiom considers what should happen if a network is
changed by adding additional support for a particular fact. Intuitively,
this should be seen as additional evidence that the fact is true, and an
operator should rate it no worse than it did before.

Axiom 9 (Monotonicity). Let N = (V,E) be a truth discovery network, and
f ∈ F , s ∈ S such that (s, f) /∈ E. Write o = obj(N, f). Consider the
network N ′ = (V,E ′) where s claims f , i.e.

E ′ = {(s, f)} ∪ E \ {(s, f ′) : f ′ 6= f, (f ′, o) ∈ E}

Then f ′ �TN f implies f ′ �TN ′ f for all f ′ ∈ F .
That is, if f receives additional support from a new source s, its ranking

should not get worse.

4.2.4 Iterative Truth Discovery Operators

Real-world algorithms for truth discovery generally compute numerical
trust and belief scores, as per definition 7. Additionally, most operate in an
iterative manner, computing trust and belief scores recursively from one
another until the respective scores (hopefully) converge to fixed values.

In this section we define the concept of iterative truth discovery oper-
ators to represent and reason about such real-world algorithms.

Definition 13. An iterative truth discovery operator is a sequence I =
(Tn)n∈N of numerical truth discovery operators, i.e. a sequence of map-
pings Tn : N → RS × RF .

For a network N and n ∈ N we will write Tn(N) = (tnN , b
n
N) to refer

directly to the source trust and claim belief mappings for the n-th iteration
(but note that this notation does not make explicit the dependence of t
and b on the sequence I).

I is said to converge to a numerical operator T ∗ if tnN → t∗N and bnN → b∗N
pointwise as n→∞ for each network N .
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Remark. Recall that a numerical operator T ∗ naturally induces a (non-
numerical) operator by rankings sources according to t∗N and facts according
to b∗N . We may therefore identify a convergent iterative operator I with the
operator induced by its limit T ∗, and write vIN and �IN for the source and
fact rankings. To be explicit:

s1 vIN s2 ⇐⇒ lim
n→∞

tnN(s1) ≤ lim
n→∞

tnN(s2)

and similarly for facts.
Note that this mapping is not injective: there may be many iterative oper-

ators with the same limit T ∗; furthermore two distinct numerical operators
T ∗ and T ∗∗ may induce the same non-numerical operator.

Given a real-world algorithm in practise, one usually aims to deter-
mine whether it converges by iterating until the distance (measured in
some suitable way) between trust (or belief) scores in consecutive iter-
ations becomes smaller than a fixed threshold. This is of course only a
heuristic, since it is not possible to determine whether a sequence con-
verges by considering only finitely many terms. Moreover even if the
difference between subsequent trust/belief scores were to become arbi-
trarily small (i.e. smaller than any threshold), one still cannot guarantee
convergence.3 This means that it may not be trivial to define a real-world
algorithm as a truth discovery operator, since it may not be clear whether
the trust and belief scores converge in all cases. Nevertheless, in this work
we will assume that the iteration does converge in all cases and consider
which axioms of section 4.2.3 are satisfied given this assumption.

To check whether a convergent operator satisfies the axioms, it will be
convenient to have sufficient conditions for some of the axioms that refer
to the numeric trust and belief scores directly.

For convenience we assume that trust and belief scores are in the range
[0, 1], as this is generally the case in practise.

Lemma 1. Let I be a convergent iterative truth discovery operator with limit
T ∗. Suppose that tnN(s) ∈ [0, 1], bnN(f) ∈ [0, 1] for all N, s, f and n. Then:

1. t∗N(s) ∈ [0, 1] and b∗N(f) ∈ [0, 1]

3 For an example of a sequence exhibiting such behaviour, consider the partial sums
of the Harmonic series

∑∞
j=1

1
j , which is divergent. The difference between the (n+1)-th

and nth terms is 1
n+1 which converges to 0 as n→∞, yet the series does not converge.
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2. If for any equivalent networks N and N ′ = π(N) it holds that

tnN(s) = tnπ(N)(π(s))

and
bnN(f) = bnπ(N)(π(f))

for all N, n, s, f , then I satisfies symmetry (axiom 1).

3. If for any network N and f ∈ F ,

src(N, f) = S =⇒ bnN(f) = 1 for sufficiently large n ∈ N

then I satisfies unanimity (axiom 4).

4. If for any network N and f ∈ F ,

src(N, f) = ∅ =⇒ bnN(f) = 0 for sufficiently large n ∈ N

Then I satisfies groundedness (axiom 5).

5. If for any networks N1, N2 with a common connected component G it
holds that tnN1

(s) = tnN2
(s) and bnN1

(f) = bnN2
(f) for s ∈ G ∩ S and

f ∈ G ∩ F , then I satisfies independence of irrelevant stuff (axiom 6).

6. If for any networks N1, N2 with a common connected component G
there are sequences of non-negative numbers (αn)n∈N, (βn)n∈N such
that, for all n ∈ N, s ∈ G ∩ S and f ∈ G ∩ F ,

tnN2
(s) = αn · tnN1

(s)

bnN2
(f) = βn · bnN1

(f)

then I satisfies weak independence of irrelevant stuff (axiom 7).

Sums

Sums [27] is an iterative algorithm for truth discovery based on the Hubs
and Authorities [16] algorithm for the ranking of web pages based on the
hyperlink structure of the web. The trust score for a source at a given
iteration is computed as the sum of the current belief scores of its claimed
facts, and the belief score for a fact is given by the sum of its sources trust
scores.

The trust/belief scores are normalised at each iteration by dividing by
the maximum score; this prevents the scores growing without bound to
ensure convergence.



CHAPTER 4. THEORETICAL ANALYSIS 91

Definition 14 (Sums). Sums is the iterative truth discovery operator Isums
defined for any networkN as follows, where we write tn for tnN for brevity:

t1(s) =
1

2
, b1(f) =

1

2

and for n > 1:

t̂n(s) =
∑

f∈facts(N,s)

bn−1(f)

b̂n(f) =
∑

s∈src(N,f)

t̂n(s)

tn(s) =
t̂n(s)

max
x∈S

t̂n(x)

bn(f) =
b̂n(f)

max
y∈F

b̂n(y)

Note that t̂ and b̂ are only used to define t and b, and are not part of
the definition of Sums itself.

If a source s makes no claims in N (i.e. facts(N, s) = ∅), we follow
the convention that an empty sum is 0 and set t̂nN(s) = 0 (similar for a fact
without sources).

Remark. The normalisation ensures that trust and belief scores always lie
in [0, 1]. Note that any source that makes at least one claim has strictly
positive trust score for all n, and any fact with at least one source has strictly
positive belief score. Since any network N must contain at least one claim,
this ensures that the maximum in the denominator for tn and bn is non-zero.

Theorem 1. If Sums is convergent, it satisfies symmetry (axiom 1), non-
dictatorship (axiom 2), unanimity (axiom 4), groundedness (axiom 5) and
weak independence of irrelevant stuff (axiom 7).

The proof of theorem 1 uses lemma 1, and can be found in appendix C.
For non-dictatorship, it is sufficient by proposition 3 and symmetry to find
a single truth discovery network in which Sums does not rank all sources
equally. Figure 4.4 shows such a network: in this network A ranks strictly
above B and C, which are ranked equally.
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Figure 4.4: A network in which Sums does not rank all sources equally.

Theorem 2. Sums does not satisfy Independence of Irrelevant Stuff (axiom
6).

Figures 4.4 and 4.5 provide an example of Sums failing to satisfy inde-
pendence. The details can be found in the proof in appendix C.

We conjecture that Sums is indeed convergent for any input network.
Indeed, it is easy to see that Sums closely related to Hubs and Authori-
ties [16], where trust scores correspond to hub scores, and belief scores
correspond to authority scores. There are only two differences: the ini-
tial scores (1

2
in Sums and 1 in Hubs and Authorities), and the method of

normalisation (Sums ensures the maximum score is 1, whereas Hubs and
Authorities ensures the sum of the squares of the scores is 1). In [16] is is
proved that Hubs and Authorities always converges using techniques from
linear algebra. The difference in normalisation only amounts to using a
different norm to measure convergence (namely ‖.‖∞ in Sums instead of
‖.‖2), so it is hoped that the proof can be modified to work for Sums.
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Figure 4.5: A counterexample to independence for Sums: this network contains the
one shown in figure 4.4 as a connected component, but A is ranked equal to B here
whereas it ranks strictly above B in figure 4.4.

4.3 Evaluation

In this section, the framework and results of the previous section are eval-
uated. In particular, the framework is evaluated with respect to the crite-
ria outlined in section 4.1.

Ability to model existing approaches

The main definitions are that of a truth discovery network and a truth
discovery operator. For the framework to be useful as tool for analysing
truth discovery, these definitions should be compatible with the existing
ideas and approaches to truth discovery, in the sense that it should be
possible to define existing algorithms within the framework.

For the input network definition, it is easily verified that the definition
given is capable of modelling the input required for many algorithms pro-
posed in the literature. Indeed, since there is little disagreement on the
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form on input across algorithms, there are several possible choices for the
exact form of the input, and the one we make is sufficient.

For the operator definition, we must consider whether the output of an
operator, namely a pair of total preorders on the set of sources and facts,
is sufficient to model the existing approaches. As mentioned previously,
output usually consists of numeric trust scores for each source, and either
numeric belief scores for facts or a single ‘true’ fact for each object.

Whilst neither of these options involve rankings of sources and facts
directly, they both induce such rankings, allowing both forms of output
to be reduced to a common form. Indeed, it was already noted that the
numeric scores induce rankings by simply sorting sources and facts by
their score in ascending order.

When given instead an identified ‘true’ fact for each object, a ranking
is induced by having the identified true facts rank equally to each other
and strictly above non-true facts. For some algorithms, the identified true
fact may not have been claimed by any source; this is not a problem in
the framework since we permit a network to contain facts with no associ-
ated sources. One may simply take the set of facts for an object to be all
permitted values for the object.4

The definition of an operator can therefore model many existing al-
gorithms. However it neglects an important characteristic of many algo-
rithms in practise, which is that they operate iteratively, running until the
results converge in some sense. For this reason, we defined an iterative
operator.

This allowed a real-world algorithm, Sums, to be defined and analysed
in the framework. Due to time constraints, no other algorithms were
realised. However it is clear that many other algorithms can be defined in
a similar way. This is immediate for algorithms similar to Sums, such as
Average·Log, Investment and PooledInvestment [27], since they only differ
in their formulae for trust and belief score updates; their fundamental
method of operation is the same.

4We make the assumption that the domain of all possible values is well-defined as a
set.
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Simplicity

Simplicity is naturally a subjective aim, since what appears simple to the
author may not appear so to others. Nonetheless, we argue that the frame-
work achieves its goal of expressing ideas as simply as possible.

For example, one of the key definitions is that of truth discovery net-
work. Adopting a graph-theoretic approach, the definition (including the
constraints on the graph) is easy to understand for those familiar with the
basics of graph theory, and even lends itself to pictorial representations of
truth discovery networks.

The next main definition is that of a truth discovery operator. This is
defined simply as a mapping from a space of inputs, denotedN , to a space
of outputs, denoted L(S) × L(F). The definition of an iterative operator
extends the non-iterative one in a natural way, by defining it simply as a
sequence of non-iterative operators.

Whilst the notation for the rankings for a particular operator and par-
ticular network may appear crowded at first, it expresses all the compo-
nents of the ranking without having to introduce additional notation prior
to its use each time. It is inspired by the notation introduced by Altman &
Tennenholtz [3] for ranking systems.

We also believe that the axioms are expressed as simply as possible.
Where the formalities become tedious, plain-English explanations are pro-
vided to give insight into the intuition backing them.

Flexibility

Flexibility is also not something that can be objectively verified. Neverthe-
less, we were able to express a variety of ideas in the framework without
excessive complexity, and the basic results shown have simple proofs.

Generality

By and large, the framework is neutral with respect to any specific idea
or approach for truth discovery. A possible exception is perhaps the defi-
nition of an iterative operator; this is defined as a sequence of numerical
operators, whereas in principle an iterative algorithm need not compute
numerical scores. Indeed, algorithms such as CRH [22] operate in an
iterative manner, yet do not assign belief scores to facts.
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However, the definition could easily be generalised to a sequence of
non-numerical operators, and a separate definition given for numerical it-
erative operators. The definition as given was chosen to reduce the num-
ber of definitions required and improve the clarity of the work, since the
only algorithm actually discussed does in fact use numeric scores.

Another aim for the framework was to permit comparison between
truth discovery and related areas in the literature. The framework is gen-
eral enough for this; whilst clearly being a framework for truth discovery,
one may easily see truth discovery networks and operators from the per-
spective of social choice and ranking systems. For example, it is easily
seen that truth discovery networks form a particular class of graphs, and
a truth discovery operator is essentially a ranking system defined on this
class of graphs. The similarity is also demonstrated empirically by the
fact that many of the developed axioms are directly inspired by axioms in
these areas, but still have intuitive interpretations in terms of truth dis-
covery. However, the similarities do not extend to areas less influenced by
social choice, such as argumentation theory and belief revision.

Having evaluated the definitions comprising the framework, we turn
to the work carried out inside it, namely the development of axioms and
analysis of operators with respect to these axioms.

Axioms and Results

Several axioms covering a range of ideas were defined, each accompa-
nied by a description of the intuition backing them. It is hoped that the
axioms represent ‘desirable’ properties for operators, although of course
desirability is a subjective property.

However, little work was done beside stating the axioms. An important
aspect of the axiomatic approach is to analyse the implications of axioms,
and to consider interactions between them (e.g. impossibility and rep-
resentation results, or interesting properties entailed by a combination of
axioms). In section 4.2 only very simple results regarding the axioms were
proved, such as the independence of similar axioms and incompatibility
of source-symmetry and dictatorship. More work is required to fully study
the developed axioms.

In terms of analysis of operators with respect to the axioms, a set of
sound axioms for Sums was obtained. Whilst I expect that these axioms
are not complete, this was not considered in section 4.2.
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A clear weakness of the analysis is that only one real-world algorithm
is considered. One of the aims for the framework was a unified model that
can represent many different algorithms – defining only a single algorithm
does not demonstrate this particularly well.

As such, there is no comparison of the theoretical properties between
operators. An interesting task would be to find axioms that distinguish
between operators, i.e. axioms that one operators satisfies but another
does not. This would provide insight into meaningful differences between
operators, which is hard to glean from the definitions in terms of an itera-
tive procedure. Knowledge of the differences in terms of simple desirable
properties could be helpful in deciding which algorithm to use in practise
for real applications of truth discovery.

It was noted above that a strength of the framework is the scope for
comparison between truth discovery and other areas. A weakness of the
analysis is that no such comparison was actually carried out, besides the
casual observations linking truth discovery to social choice and ranking
systems. To make the links more concrete, one could consider whether
social welfare functions, ranking systems, annotation aggregators etc. can
be formulated as truth discovery operators, or vice versa.

4.4 Future Work

This section discusses possible future work for the theoretical part of the
project.

4.4.1 Unfinished Business

Due to time constraints, there are some elements of the work left in a
semi-finished state. The most obvious example is regarding the conver-
gence of Sums. At the end of section 4.2.4, we conjecture that the trust
and belief scores of Sums convergence in any input network. As men-
tioned there, a proof might be obtained by modifying the proof of the
convergence of Hubs and Authorities, to which Sums is closely related.

The lack of a proof of the convergence in all cases (or otherwise, as
the case may be) leaves the analysis of Sums in the unsatisfactory state
where it is unclear if Sums properly defines a truth discovery operator in
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the sense of definition 6. This also means that theorems 1 and 2 must
include the hypothesis that Sums is actually convergent.

Another unfinished element of the Sums analysis is that we make no
determination (or even conjecture) on whether is satisfies the monotonic-
ity and coherence axioms. Monotonicity and coherence are also not ad-
dressed in lemma 1.

4.4.2 Future Directions

In terms of future directions for the framework, two aspects to consider
are problems that could be fixed in future work, and new ideas that could
be explored. New ideas can be further split into ideas for the framework
itself (i.e. new or modified definitions and concepts) and ideas for new
results that one could attempt to prove.

A first problem is in the role of objects. Whilst objects are an impor-
tant part of truth discovery in many approaches (particularly those which
output an identified true fact for each object), they do not play much of
a role in the framework of section 4.2, beside the constraint that sources
make at most one claim per object in definition 6.

Future work could address this by developing axioms that consider
objects directly. For example, one could consider what happens if two ob-
jects are ‘merged’, i.e. facts from each combined under object in a new
network. This would presumably have little or no effect in algorithms such
as Sums and Average·Log [27] which do not use objects in their calcula-
tions, but would affect algorithms such as Investment [27] and TruthFinder
[35] where the role of objects is important.5

In many of the definitions and axioms, there is redundancy where we
state a property for source rankings, and then an almost identical one
for fact rankings. Similarly, the proofs often prove a result for source
rankings, and the result for facts follows by an identical argument. This
may lead one to wonder whether truth discovery as defined here is just
an instance of ranking k groups of nodes in a k + 1-partite graph for
the special case k = 2 (plus one to account for the objects). A similar
idea is considered in the PhD thesis of Pasternack ([26], section 4.5.3) to
represent ‘groups’ of sources.

5 Objects are termed mutual exclusion sets in [27].
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Taking this more general view would highlight the symmetry between
the groups (sources and facts in our case), where symmetry exists, and
remove redundancy from definitions and proofs. However, this new prob-
lem may no longer represent truth discovery in the same way, and would
need careful interpretation. In particular, it is not clear how objects would
fit into this approach. Nevertheless, it could be something to consider in
future work.

There are numerous possible extensions to the framework that could
be made. One example is the definition of an iterative truth discovery
operator (definition 13). Most real-world algorithms operate not only
iteratively but recursively, updating trust and belief scores based on the
scores in the previous iteration. However, the recursion aspect is not cap-
tured in any definition in this work. Making such a definition could lead
to a simpler representation of these algorithms in terms of the update
rules. This would provide a more general set up for studying recursively
iterative algorithms; for example one could consider the effects of making
changes to the update rules. It could also provide a method for comparing
different algorithms, by comparing their update rules.

More potential extensions to the framework come from the numerous
extensions to the basic truth discovery model, some of which were listed
in section 2.2. This would allow for consideration of more specific sub-
problems in truth discovery and lead to a richer theory.

Future work on the axioms themselves could involve generalising ax-
ioms where possible. For example, one may note that unanimity and
groundedness (axioms 4 and 5) are special cases of the following axiom.

Axiom 10. For any truth discovery networkN and facts f1, f2 ∈ F , src(N, f1) ⊆
src(N, f2) implies f1 �TN f2.

That is, facts with ‘more’ sources rank higher than those with less.6

Unanimity is the case where src(N, f2) = S, and groundedness is the
case where src(N, f1) = ∅.

Future work could investigate this axiom in detail. For example, it
would be interesting to find operators that satisfy unanimity and/or ground-
edness, but not this more general axiom.

Also relating to axioms, it was mentioned in the text preceding the
monotonicity axiom (axiom 9) that most of the axioms deal with the prop-

6 ‘More’ here is in the sense of set inclusion, not the number of sources
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erties of rankings in a static network. Monotonicity, however, deals with
modifications to a network and the resulting effect on rankings. These
kind of axioms, where input is changed in some way, are used to great
effect in social choice and related areas; a notable example is the axioma-
tisation of PageRank [25] in [4]. Developing more axioms of this type
may therefore be useful in seeking sound and complete axioms for truth
discovery algorithms.

Finally, the approach taken throughout the theoretical work was largely
to apply ideas from social choice to truth discovery. Future work could ex-
plicitly incorporate ideas from other related areas such as argumentation
theory and belief revision.

In terms of new results, a major aspect of future work will be to formu-
late more results involving the axioms. As alluded to in the evaluation in
section 4.3, this could include implications of the axioms (particularly the
implications of an operator satisfying multiple axioms simultaneously),
impossibility results, and finding sound and complete axioms for a par-
ticular algorithm or class of algorithms. More truth discovery operators
could also be defined to provide examples of axioms failing to hold.



Chapter 5

Conclusions

Truth discovery has been explored in this project from a practical per-
spective in chapter 3, and a theoretical perspective in chapter 4. The two
halves have been largely disjoint, although it is noted that the software
implementation was useful in constructing examples for the theoretical
work and verifying results empirically.

The practical aspect involved implementing truth discovery algorithms
in Python and making them accessible through command-line and web-
based user interfaces. Methods for evaluating and comparing algorithms
were provided, and some basic algorithm analysis was demonstrated in
section 3.3. Additionally, visual representation of truth discovery datasets
and results were produced, which were useful for demonstration of con-
cepts throughout the theoretical chapter.

For the theoretical component, we set out a formal framework in which
to study truth discovery; the key definitions being that of a truth discovery
network and truth discovery operator. Graph-theoretic and ordinal repre-
sentations were used, highlighting the similarities with related areas in
the literature such as ranking systems and social choice.

Following the approach commonly taken in social choice, axioms were
defined to encode desirable properties of operators. The axioms presented
are largely inspired by existing axioms from other areas in the literature,
adapted to the truth discovery framework. Some basic results regarding
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these axioms were shown, including a proof that Sums satisfies some but
not all of our axioms when viewed as an operator within the framework.



Chapter 6

Reflection on Learning

To conclude this report, we reflect on the skills developed and what was
learned throughout the project. There were several aspects to the project,
each requiring a unique set of skills. In particular, there were elements of
research, software development, theoretical work, and project management.

Research was required throughout the project, and especially in its
early stages. Understanding the cutting-edge approaches and ideas in
the truth discovery world required careful reading of numerous published
papers, something which I had little experience with before this project.
With time I was able to efficiently parse the relevant information from
these articles, which often have broad scope and contain sections irrele-
vant to my work. Extracting the important details from large bodies of
text in this way is an important skill that will undoubtedly be useful in
future work.

Beyond just extracting these details, I had to constantly relate them
back to my own project to consider how they were relevant and if they
would influence my approach. This was particularly challenging when
reading papers relating to other fields, such as social choice and ranking
systems. As a result of this I am now more confident in combining ideas
from existing papers and keeping a mental map of information across the
literature.

Reading published papers also improved my writing skills, as I became
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more accustomed to the type of language and phrasing appropriate for
technical writing.

In terms of software development, the project called for a fairly large-
scale system to be designed, developed and tested. This contrasted with
previous programming work I had done, which for the most part only
involved writing code to satisfy fixed requirements. Aspects of the de-
sign process, such as considering relevant use cases and user interfaces,
were not specific to truth discovery; this allowed me to develop general
software design skills that will be useful in future projects.

Writing documentation is another general skill that the project pro-
vided ample opportunity to practise. In addition to documenting the code
throughout development, I wrote a user guide explaining the concepts of
the system and how it can be used. This required looking critically at
the software as a whole and understanding how it can be broken down
logically in a clear way.

The theoretical work was largely separate from the programming, and
required very different skills and techniques. Transferable skills developed
here include formulating mathematically rigorous definitions, theorems
and proofs, mathematical writing, and laying out a mathematical paper.
I also had to think carefully about the level of generality and the type of
results desired; this involved many iterations before the final framework
was decided on. I am better equipped to approach future theoretical work
having gone through the process in this project.

Finally, this was a long-running individual project which required time
management and organisational skills. In particular, I learned through
trial and error what sort of time schedule works well for me personally;
this will be carried forward to future projects in order to use my time as
efficiently as possible. I also learned suitable methods for organising my
workload, finding Issues on GitHub particularly useful, for example.1

1 https://help.github.com/en/articles/about-issues

https://help.github.com/en/articles/about-issues
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Figure A.1: Basic view of the input form in the web interface.
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Figure A.2: CSV dataset entry in the web interface.
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Figure A.3: Advanced options for algorithm parameters in the web interface.
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Figure A.4: Example results of a single algorithm run via the web interface.
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Figure A.5: Example results of several algorithms run simultaneously via the web
interface.
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Figure A.6: Graph representation of results of a truth discovery algorithm, presented
in the web interface.
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Figure A.7: Frame from an animation of the results of an algorithm as it iterates,
presented in the web interface.



Appendix B

Test Results

======================================= test session starts

=======================================

platform linux -- Python 3.6.7, pytest-4.2.0, py-1.7.0, pluggy-0.8.1 -- /home/joe/

documents/uni/project/code/venv/bin/python3

cachedir: .pytest_cache

rootdir: /home/joe/documents/uni/project/code, inifile:

collecting ... collecting 31 items

collected 150 items

truthdiscovery/test/test_algorithms.py::TestBase::test_empty_dataset PASSED [ 0%]

truthdiscovery/test/test_algorithms.py::TestBase::test_get_parameter_names PASSED [ 1%]

truthdiscovery/test/test_algorithms.py::TestVoting::test_basic PASSED [ 2%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_run_fail PASSED [ 2%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_fixed_priors PASSED [ 3%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_voted_priors PASSED [ 4%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_uniform_priors PASSED [

4%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_invalid_priors PASSED [

5%]

truthdiscovery/test/test_algorithms.py::TestSums::test_basic PASSED [ 6%]

truthdiscovery/test/test_algorithms.py::TestAverageLog::test_basic PASSED [ 6%]

truthdiscovery/test/test_algorithms.py::TestInvestment::test_basic PASSED [ 7%]

truthdiscovery/test/test_algorithms.py::TestInvestment::test_converge_to_zero PASSED [ 8%]

truthdiscovery/test/test_algorithms.py::TestPooledInvestment::test_basic PASSED [ 8%]

truthdiscovery/test/test_algorithms.py::TestTruthFinder::test_basic PASSED [ 9%]

truthdiscovery/test/test_algorithms.py::TestTruthFinder::test_no_implications PASSED [

10%]

truthdiscovery/test/test_algorithms.py::TestTruthFinder::test_trust_invalid PASSED [ 10%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_sums PASSED [ 11%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_average_log PASSED [ 12%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_investment PASSED [ 12%]
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truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_pooled_investment PASSED [

13%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_truthfinder PASSED [ 14%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_voting PASSED [ 14%]

truthdiscovery/test/test_algorithms.py::TestIteratorsForAlgorithms::

test_default_iterator_types PASSED [ 15%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_final_result PASSED [

16%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_no_logging PASSED [

16%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_partial_results PASSED

[ 17%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_sums_detailed PASSED [

18%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_iterator PASSED [ 18%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_algorithm_parameter PASSED [

19%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_output_obj PASSED [ 20%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_algorithm_params PASSED [

20%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_no_commands PASSED [ 21%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_basic PASSED [ 22%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_results PASSED [ 22%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_multiple_parameters

PASSED [ 23%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_multiple_algorithms

PASSED [ 24%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_get_algorithm_instance

PASSED [ 24%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_set_prior_belief PASSED [

25%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_set_iterator PASSED [

26%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_invalid_algorithm_parameter PASSED [ 26%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_invalid_algorithm PASSED

[ 27%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_filter_sources_variables

PASSED [ 28%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_default_output PASSED [

28%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_custom_output PASSED [

29%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_show_most_believed_values

PASSED [ 30%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_belief_stats PASSED [

30%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_synthetic_generation

PASSED [ 31%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_synthetic_generation_claim_prob_1 PASSED [ 32%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_synthetic_generation_source_trust_1 PASSED [ 32%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_synthetic_generation_invalid_params PASSED [ 33%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_supervised_dataset_and_accuracy PASSED [ 34%]



APPENDIX B. TEST RESULTS 121

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_accuracy_not_supervised

PASSED [ 34%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_accuracy_undefined PASSED

[ 35%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_graph_generation PASSED [

36%]

truthdiscovery/test/test_clients.py::TestWebClient::test_routing PASSED [ 36%]

truthdiscovery/test/test_clients.py::TestWebClient::test_home PASSED [ 37%]

truthdiscovery/test/test_clients.py::TestWebClient::test_run_fail PASSED [ 38%]

truthdiscovery/test/test_clients.py::TestWebClient::test_run_success PASSED [ 38%]

truthdiscovery/test/test_clients.py::TestWebClient::test_run_multiple_algorithms PASSED [

39%]

truthdiscovery/test/test_clients.py::TestWebClient::test_results_diff PASSED [ 40%]

truthdiscovery/test/test_clients.py::TestWebClient::

test_results_diff_invalid_previous_results PASSED [ 40%]

truthdiscovery/test/test_clients.py::TestWebClient::test_get_json_graph PASSED [ 41%]

truthdiscovery/test/test_clients.py::TestWebClient::test_get_json_animated_gif PASSED [

42%]

truthdiscovery/test/test_clients.py::TestWebClient::test_voting_imagery PASSED [ 42%]

truthdiscovery/test/test_clients.py::TestWebClient::test_empty_dataset PASSED [ 43%]

truthdiscovery/test/test_clients.py::TestWebClient::test_non_convergence PASSED [ 44%]

truthdiscovery/test/test_codestyle.py::TestCodeStyle::test_pep8 PASSED [ 44%]

truthdiscovery/test/test_drawing.py::TestRendering::test_entity_positioning PASSED [ 45%]

truthdiscovery/test/test_drawing.py::TestRendering::test_node_ordering PASSED [ 46%]

truthdiscovery/test/test_drawing.py::TestRendering::test_single_source PASSED [ 46%]

truthdiscovery/test/test_drawing.py::TestRendering::test_invalid_node_size PASSED [ 47%]

truthdiscovery/test/test_drawing.py::TestRendering::test_no_horizontal_overlapping PASSED

[ 48%]

truthdiscovery/test/test_drawing.py::TestRendering::test_png_is_default PASSED [ 48%]

truthdiscovery/test/test_drawing.py::TestRendering::test_long_labels PASSED [ 49%]

truthdiscovery/test/test_drawing.py::TestRendering::test_matrix_renderer PASSED [ 50%]

truthdiscovery/test/test_drawing.py::TestRendering::test_image_size PASSED [ 50%]

truthdiscovery/test/test_drawing.py::TestRendering::test_progress_bar PASSED [ 51%]

truthdiscovery/test/test_drawing.py::TestBackends::test_base_backend PASSED [ 52%]

truthdiscovery/test/test_drawing.py::TestBackends::test_valid_png PASSED [ 52%]

truthdiscovery/test/test_drawing.py::TestBackends::test_results_based_valid_png PASSED [

53%]

truthdiscovery/test/test_drawing.py::TestBackends::test_json_backend PASSED [ 54%]

truthdiscovery/test/test_drawing.py::TestBackends::test_json_backend_entity_serialisation

PASSED [ 54%]

truthdiscovery/test/test_drawing.py::TestColourSchemes::test_get_gradient_colour PASSED [

55%]

truthdiscovery/test/test_drawing.py::TestColourSchemes::test_plain_colour_scheme PASSED [

56%]

truthdiscovery/test/test_drawing.py::TestColourSchemes::test_results_based_colours PASSED

[ 56%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_base PASSED [ 57%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_gif_animation PASSED [ 58%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_json_animation PASSED [ 58%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_renderer PASSED [ 59%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_fps PASSED [ 60%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_invalid_backend PASSED [ 60%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_default_backend PASSED [ 61%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_progress_bar PASSED [ 62%]

truthdiscovery/test/test_input.py::TestDataset::test_num_sources_variables_claims PASSED [

62%]

truthdiscovery/test/test_input.py::TestDataset::test_claims_matrix PASSED [ 63%]
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truthdiscovery/test/test_input.py::TestDataset::test_mut_ex_matrix PASSED [ 64%]

truthdiscovery/test/test_input.py::TestDataset::

test_source_multiple_claims_for_a_single_variable PASSED [ 64%]

truthdiscovery/test/test_input.py::TestIDMapping::test_insert PASSED [ 65%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_create PASSED [ 66%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_num_sources_variables_claims

PASSED [ 66%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_dimension PASSED [ 67%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_from_csv PASSED [ 68%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_invalid_csv_shape PASSED [ 68%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_from_csv_empty_rows PASSED [

69%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_from_csv_single_row_or_column

PASSED [ 70%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_claims_matrix PASSED [ 70%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_mutual_exclusion_matrix PASSED

[ 71%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_export_to_csv PASSED [ 72%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_from_csv PASSED [ 72%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_accuracy PASSED [ 73%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_unknown_variable PASSED [ 74%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_no_true_values_known PASSED [

74%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_not_enough_claimed_values

PASSED [ 75%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_trust_as_list PASSED [ 76%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_invalid_trust_vector_shape

PASSED [ 76%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_trust_range_error PASSED [ 77%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_valid_trusts PASSED [ 78%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_claim_probability PASSED [ 78%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_invalid_claim_probability

PASSED [ 79%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_domain_size PASSED [ 80%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_export_to_csv PASSED [ 80%]

truthdiscovery/test/test_input.py::TestImplications::test_implications PASSED [ 81%]

truthdiscovery/test/test_input.py::TestImplications::test_invalid_implication_values

PASSED [ 82%]

truthdiscovery/test/test_input.py::TestFileDataset::test_base PASSED [ 82%]

truthdiscovery/test/test_input.py::TestFileDataset::test_basic PASSED [ 83%]

truthdiscovery/test/test_input.py::TestFileDataset::test_implications PASSED [ 84%]

truthdiscovery/test/test_input.py::TestFileSupervisedData::test_base PASSED [ 84%]

truthdiscovery/test/test_input.py::TestFileSupervisedData::test_basic PASSED [ 85%]

truthdiscovery/test/test_iterators.py::TestBaseIterator::test_run_base_fail PASSED [ 86%]

truthdiscovery/test/test_iterators.py::TestBaseIterator::test_it_count PASSED [ 86%]

truthdiscovery/test/test_iterators.py::TestBaseIterator::test_reset PASSED [ 87%]

truthdiscovery/test/test_iterators.py::TestFixedIterator::test_invalid_limit PASSED [ 88%]

truthdiscovery/test/test_iterators.py::TestFixedIterator::test_finish_condition PASSED [

88%]

truthdiscovery/test/test_iterators.py::TestConvergenceIterator::test_basic PASSED [ 89%]

truthdiscovery/test/test_iterators.py::TestConvergenceIterator::

test_invalid_distance_measures PASSED [ 90%]

truthdiscovery/test/test_iterators.py::TestConvergenceIterator::test_did_not_converge

PASSED [ 90%]

truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_l1 PASSED [ 91%]

truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_l2 PASSED [ 92%]

truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_l_inf PASSED [ 92%]
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truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_cosine PASSED [ 93%]

truthdiscovery/test/test_result.py::TestResult::test_most_believed_values PASSED [ 94%]

truthdiscovery/test/test_result.py::TestResult::test_num_iterations PASSED [ 94%]

truthdiscovery/test/test_result.py::TestResult::test_time_taken PASSED [ 95%]

truthdiscovery/test/test_result.py::TestResult::test_filter_result PASSED [ 96%]

truthdiscovery/test/test_result.py::TestResult::test_stats PASSED [ 96%]

truthdiscovery/test/test_result.py::TestResultDiff::test_no_common_sources_or_vars PASSED

[ 97%]

truthdiscovery/test/test_result.py::TestResultDiff::test_common_sources PASSED [ 98%]

truthdiscovery/test/test_result.py::TestResultDiff::test_common_vars_but_no_common_values

PASSED [ 98%]

truthdiscovery/test/test_result.py::TestResultDiff::test_common_var_values PASSED [ 99%]

truthdiscovery/test/test_result.py::TestResultDiff::test_no_iteration_info PASSED [100%]

=================================== 150 passed in 9.57 seconds

====================================



Appendix C

Proofs

C.1 Proof of proposition 1

Proof. The ‘only if’ direction is clear. For the converse, suppose T is
source, fact and object symmetric, and let N , N ′ = π(N) be equivalent
networks. Define

πS(x) =

{
π(x) if x ∈ S
x if x ∈ F ∪ O

Define πF , πO similarly, and set σ = πS ◦ πF ◦ πO. Then for s ∈ S,

σ(s) = πS(πF(πO(s)))

= πS(πF(s))

= πS(s)

= π(s)

Similarly σ(f) = π(f) and σ(o) = π(o) for f ∈ F and o ∈ O. Hence σ = π.
Let s1, s2 ∈ S. Since πO only permutes objects, we may apply object-

symmetry to get

s1 vTN s2 ⇐⇒ πO(s1) vTπO(N) πO(s2)

124
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Then since πF only permutes facts and πS only permutes sources, we may
successively apply fact and object symmetry to the right hand side to get

s1 vTN s2 ⇐⇒ σ(s1) vTσ(N) σ(s2)

⇐⇒ π(s1) vTπ(N) π(s2)

⇐⇒ π(s1) vTN ′ π(s2)

An identical argument for fact ranking gives f1 �TN f2 ⇐⇒ π(f1) �TN ′ f2.
Hence T is symmetric.

C.2 Proof of proposition 2

Proof. For the first claim, consider the permutation π = (s1, s2). We claim
that π(N) = N . Let E be the edges in N and π(E) be the edges in π(N).
For any (s, f) ∈ S × F we have three cases:

1. s /∈ {s1, s2}: in this case (π(s), π(f)) = (s, f) and (s, f) ∈ E iff
(π(s), π(f)) ∈ π(E) by definition, so (s, f) ∈ E iff (s, f) ∈ π(E).

2. s = s1: Here we have (s1, f) ∈ E iff (s2, f) ∈ E by hypothesis. This
is equivalent to (π(s2), π(f)) ∈ π(E) by definition of π(E), which by
definition of π is equivalent to (s1, f) ∈ π(E).

3. s = s2: As above, (s2, f) ∈ E iff (s2, f) ∈ π(E)

Also, it is clear that (f, o) ∈ E iff (f, o) ∈ π(E) for f ∈ F , o ∈ O. We have
shown that (x, y) ∈ E iff (x, y) ∈ π(E), i.e. π(E) = E and thus π(N) = N .
Applying source-symmetry, this gives

s1 vTN s2 ⇐⇒ π(s1) vTπ(N) π(s2)

⇐⇒ s2 vTN s1

i.e. s1 'TN s2.
For the second claim, consider σ = (f1, f2) and apply a similar argu-

ment to the above. Note that we require f1 and f2 to be associated with
the same object here so that both facts have the same incoming and out-
going edges in N .
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C.3 Proof of proposition 3

Proof. Suppose T is source-symmetric and a dictatorship with dictator s∗.
Let N = (V,E) be a truth discovery network.

1. Let s1, s2 ∈ S. Without loss of generality s1 vTN s2, since vTN is
complete. Consider the permutation π = (s1, s

∗). We have s2 vTπ(N)

s∗ by dictatorship in π(N), which by symmetry means π−1(s2) vTN
π−1(s∗), i.e. s2 vTN s1. Hence s1 'TN s2 as required.

2. Let f1, f2 ∈ F such that there is a source s with (s, f1) ∈ E. Set
σ = (s, s∗). Then σ(E) contains (σ(s), σ(f1)) = (s∗, f1), so we have
σ(f2) �Tσ(N) f1 = σ(f1) since the facts claimed by s∗ rank above all
others. Applying symmetry gives f2 �TN f1 as required.

This implies there is no source-symmetric strict dictatorship. If T were
such an operator then T is also a non-strict dictatorship, so symmetry
implies all sources are ranked equally, but this contradicts s @T

N s∗ for all
s 6= s∗.

C.4 Proof of proposition 4

Proof. The operator T defined in example 2 is not a dictatorship but is a
binary generalised dictatorship. Indeed, it is clearly a binary generalised
dictatorship from the definition. To show it is not a dictatorship, it is
sufficient by symmetry and proposition 3 to find a network in which T
does not rank all sources equally. A suitable example is a network N
where a source s claims two facts and all other sources claim only one
fact. Then QN = {s}, so s is ranked strictly above all other sources.

For an operator that is a dictatorship but not a binary generalised dic-
tatorship, fix two distinct sources s∗, s∗∗ ∈ S and consider the numerical
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operator T ′ defined by

tN(s) =


2 if s = s∗

1 if s = s∗∗

0 otherwise

bN(f) =

{
1 if s∗ ∈ src(N, f)

0 otherwise

Clearly this is a dictatorship with dictator source s∗. Also, for any network
N we have s @T ′

N s∗∗ @T ′
N s∗; such a chain of strict inequalities cannot

occur for a binary generalised dictatorship, so we are done.

C.5 Proof of proposition 5

Proof. An operator that satisfies unanimity but not groundedness is T that
ranks facts according to the function

rN(f) =

{
1 if src(N, f) ∈ {S, ∅}
0 otherwise

(f ∈ F)

i.e. f1 �TN f2 iff rN(f1) ≤ rN(f2) (note that T ’s ranking of sources is
irrelevant). Clearly T satisfies unanimity but not groundedness: consider
any network N in which there is a fact f1 with no corresponding sources,
and a fact f2 with at least one source, but whose sources are not the whole
of S. Then f1 6�TN f2 contrary to the requirements of groundedness.

Reversing the fact ordering of T gives an operator satisfying ground-
edness but not unanimity.

C.6 Proof of lemma 1

The following lemma will be used to prove the claim regarding weak in-
dependence.
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Lemma 2. Let (an)n∈N, (bn)n∈N be convergent sequences of real numbers,
and let L = limn→∞ an, M = limn→∞ bn.

1. If L < M , then an < bn for sufficiently large n.

2. If an ≤ bn for sufficiently large n, then L ≤M .

Proof. For the first claim, suppose L < M . Set ε = 1
2
(M − L) > 0. By

definition of the limit an → L, there is N1 ∈ N such that |an − L| < ε for
all n > N1. In particular, an − L < ε = 1

2
M − 1

2
L and so an < 1

2
(M + L).

On the other hand, by definition of bn → M there is N2 ∈ N such that
|bn − M | < ε for n > N2, and in particular bn − M > −ε = 1

2
L − 1

2
M

and so bn >
1
2
(M + L). Thus, for n > N := max{N1, N2} we have an <

1
2
(M + L) < bn.

The second claim is now immediate; if an ≤ bn for sufficiently large n
and L ≤ M were false, then by the first claim we would have bn < an for
sufficiently large n, which is a contradiction.

Proof of lemma 1. Let I be as in the statement of the lemma.

1. This is immediate since t∗N(s) is a limit of numbers in [0, 1] which is
a closed set, so t∗N(s) ∈ [0, 1] (and similar for b∗N(f)).

2. Let N and N ′ = π(N) be equivalent networks. For any s1, s2 ∈ S we
have

s1 vIN s2 ⇐⇒ lim
n→∞

tnN(s1) ≤ lim
n→∞

tnN(s2)

⇐⇒ lim
n→∞

tnπ(N)(π(s1)) ≤ lim
n→∞

tnπ(N)(π(s2))

⇐⇒ π(s1) vIπ(N) π(s2)

⇐⇒ π(s1) vIN ′ π(s2)

and for f1, f2 ∈ F ,

f1 �IN f2 ⇐⇒ lim
n→∞

bnN(f1) ≤ lim
n→∞

bnN(f2)

⇐⇒ lim
n→∞

bnπ(n)(π(f1)) ≤ lim
n→∞

bnπ(n)(π(f2))

⇐⇒ π(f1) �Iπ(N) π(f2)

⇐⇒ π(f1) �IN ′ π(f2)

Hence I is symmetric.
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3. Let N be a truth discovery network and f ∈ F with src(N, f) = S.
By hypothesis there is M ∈ N such that bnN(f) = 1 for n > M , so
b∗N(f) = limn→∞ 1 = 1 ≥ b∗N(f

′) for any f ′. This means f ′ �IN f , i.e.
I satisfies unanimity.

4. Similarly, if src(N, f) = ∅ then by hypothesis bnN(f) = 0 for n suf-
ficiently large, so b∗N(f) = 0 ≤ b∗N(f

′) for any f ′, and f �IN f ′ as
required for groundedness.

5. Let G, N1, N2 be as in the statement of the claim. For s1, s2 ∈ G ∩ S
we have

s1 vIN1
s2 ⇐⇒ lim

n→∞
tnN1

(s1) ≤ lim
n→∞

tnN1
(s2)

⇐⇒ lim
n→∞

tnN2
(s1) ≤ lim

n→∞
tnN2

(s2)

⇐⇒ s1 vIN2
s2

and an identical argument proves the same for facts. Hence I satis-
fies independence of irrelevant stuff.

6. Let G, N1, N2 be as in the statement of the claim. Let s1, s2 ∈ G ∩ S
and suppose s1 @I

N1
s2, i.e. limn→∞ t

n
N1
(s1) < limn→∞ t

n
N1
(s2). By

lemma 2 part 1, there isK ∈ N such that tnN1
(s1) < tnN1

(s2) for n > K.
For any such n, αn ≥ 0 means tnN2

(s1) = αn · tnN1
(s1) ≤ αn · tnN1

(s2) =
tnN2

(s2). Lemma 2 part 2 then gives limn→∞ t
n
N2
(s1) ≤ limn→∞ t

n
N2
(s2),

i.e. s1 vIN2
s2.

An identical argument proves the result for fact ranking. Hence I
satisfies weak independence.

C.7 Proof of theorem 1

Proof. Assume Sums is convergent. Since trust and belief scores for Sums
are always in the range [0, 1], lemma 1 can be applied.

1. Symmetry: We will use lemma 1 part 1. Let N and N ′ = π(N) be
equivalent networks. We show that tnN(s) = tnπ(N)(π(s)) and bnN(f) =
bnπ(N)(π(f)) for all n ∈ N by induction.
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The base case n = 1 is clear since t1N , t1π(N), b
1
N and b1π(N) are constant

with value 1
2
. Suppose n ∈ N is such that tnN(s) = tnπ(N)(π(s)) and

bnN(f) = bnπ(N)(π(f)) for all s ∈ S and f ∈ F .

Let s ∈ S. Note that f ∈ facts(N, s) iff π(f) ∈ facts(π(N), π(s))
by definition of π(N). In particular, π restricted to facts(N, s) is a
bijection into facts(π(N), π(s)), so we may consider a ‘substitution’
y = π(f) in the sum for t̂n+1

N (s):

t̂n+1
N (s) =

∑
f∈facts(N,s)

bnN(f)

=
∑

y∈facts(π(N),π(s))

bnN(π
−1(y))

=
∑

y∈facts(π(N),π(s))

bnπ(N)(π(π
−1(y)))

=
∑

y∈facts(π(N),π(s))

bnπ(N)(y)

= t̂n+1
π(N)(π(s))

Similarly, for f ∈ F note that π restricted to src(N, f) is a bijection
into src(π(N), π(F )): using the above and an identical argument
we get b̂n+1

N (f) = b̂n+1
π(N)(π(f)).

Now we have

tn+1
N (s) =

t̂n+1
N (s)

max
x∈S

t̂n+1
N (x)

=
t̂n+1
π(N)(π(s))

max
x∈S

t̂n+1
π(N)(π(x))

Note that π restricted to S is a bijection into S itself, since by defi-
nition of equivalent networks each of S, F and O are closed under
π. Hence we may replace π(x) in the maximum in the denomina-
tor with simply x by surjectivity of π, and so tn+1

N (s) = tn+1
π(N)(π(s)).
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Similarly, bn+1
N (f) = bn+1

π(N)(π(f)). Hence, by lemma 1, Sums satisfies
symmetry.

2. Non-dictatorship: We have shown that Sums satisfies symmetry. In
particular Sums satisfies source-symmetry, so given proposition 3 it
suffices to show that there is at least one truth discovery network
N for which Sums does not rank all sources equally. The network
shown in figure 4.4 is a suitable example. In this network there are
three sources A, B and C, and two facts D and E, each relating to
a different object1.

We will show that Sums converges on this network, and that B ranks
strictly beneath A.

For brevity write an for tnN(A), ân for t̂nN(A) and similar forB,C,D,E.
We claim that for all n > 1, an = 1, bn = cn = 1

2
and dn = en = 1. By

definition, for all n > 1:

ân = dn−1 + en−1, b̂n = dn−1, ĉn = en−1

d̂n = ân + b̂n, ên = ân + ĉn

Recalling that d1 = e1 =
1
2
, taking n = 2 we get

â2 = 1, b̂2 =
1

2
, ĉ2 =

1

2

d̂2 =
3

2
, ê2 =

3

2

and so a2 = 1, b2 = c2 =
1
2

and d2 = e2 = 1. For n = 3 we get

â3 = d2 + e2 = 2, b̂3 = d2 = 1, ĉ3 = e2 = 1

d̂3 = â3 + b̂3 = 3, ê3 = â3 + ĉ3 = 3

and so a3 = 1, b3 = c3 = 1
2

and d3 = e3 = 1, i.e. the trust/belief
scores are unchanged. Repeating in this way we see that an = 1 and
bn = 1

2
for all n > 1. Hence t∗N(A) = 1 > 1

2
= t∗N(B): this means B

ranks strictly below A, which completes the proof.
1 If S contains more than three sources we consider all other sources to have no

outgoing edges (and similarly for if F contains more than two facts). Note that the
objects to not play any role in Sums.
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3. Unanimity: Let N be a truth discovery network and suppose f ∈ F
is such that src(N, f) = S. Then, for n > 1 and any f ′ ∈ F ,

b̂n(f
′) =

∑
s∈src(N,f ′)

t̂n(s) ≤
∑
s∈S

t̂n(s) = b̂n(f)

using the fact that t̂n(s) ≥ 0. Therefore maxy∈F b̂n(y) = b̂n(f), so
bn(f) = 1. By lemma 1 part 3, Sums satisfies unanimity.

4. Groundedness: Let N be a truth discovery network and suppose
f ∈ F has src(N, f) = ∅. By definition bn(f) = 0 for all n > 1, so by
lemma 1, Sums satisfies groundedness.

5. Weak independence: To show weak independence we will use
lemma 1 part 6. Let N1, N2 be truth discovery networks with a com-
mon connected component G. Suitable sequences (αn)n∈N, (βn)n∈N
will be defined recursively. For n = 1, set α1 = β1 = 1. We have, by
definition of Sums,

t1N2
(s) =

1

2
= α1 ·

1

2
= α1 · t1N1

(s)

b1N2
(f) =

1

2
= β1 ·

1

2
= β1 · b1N1

(f)

for any s ∈ G ∩ S and f ∈ G ∩ F . Now suppose n ∈ N is such that
there are αn−1, βn−1 ≥ 0 with

tn−1N2
(s) = αn−1 · tn−1N1

(s)

bn−1N2
(f) = βn−1 · bn−1N1

(f)

for all s ∈ G ∩ S and f ∈ G ∩ F . Fix a source s ∈ G ∩ S. Let E1, E2

and EG denote the set of edges in N1,N2 and G respectively. Note
that for any fact f ∈ F ,

f ∈ facts(N1, s) ⇐⇒ (s, f) ∈ E1

⇐⇒ (s, f) ∈ EG
⇐⇒ (s, f) ∈ E2

⇐⇒ f ∈ facts(N2, s)
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so facts(N1, s) = facts(N2, s). Hence

t̂nN2
(s) =

∑
f∈facts(N2,s)

bn−1N2
(f)

=
∑

f∈facts(N1,s)

βn−1 · bn−1N1
(f)

= βn−1
∑

f∈facts(N1,s)

bn−1N1
(f)

= βn−1t̂
n
N1
(s)

Write
γ1 =

1

max
x∈S

t̂nN1
(x)

, γ2 =
1

max
x∈S

t̂nN2
(x)

so that

tnN1
(s) = γ1 · t̂nN1

(s)

tnN2
(s) = γ2 · t̂nN2

(s)

= γ2 · βn−1 · t̂nN1
(s)

=
γ2 · βn−1

γ1
· γ1 · t̂nN1

(s)

=
γ2 · βn−1

γ1
· tnN1

(s)

Taking αn = γ2βn−1

γ1
we have the desired equality for trust scores.

Note that γ1, γ2 > 0, so αn ≥ 0.

The argument for belief scores is similar. Fix f ∈ G ∩ F . We have
src(N1, f) = src(N2, f), so

b̂nN2
(f) =

∑
s∈src(N2,f)

t̂nN2
(s)

=
∑

s∈src(N1,f)

βn−1 · t̂nN1
(s)

= βn−1 · b̂nN1
(f)

Write
δ1 =

1

max
y∈F

b̂nN1
(y)

, δ2 =
1

max
y∈F

b̂nN2
(y)
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Then

bnN1
(f) = δ1 · b̂nN1

(f)

bnN2
(f) = δ2 · b̂nN2

(f)

= δ2 · βn−1 · b̂nN1
(f)

=
δ2 · βn−1

δ1
· δ1 · b̂nN1

(f)

=
δ2 · βn−1

δ1
· bnN1

(f)

so we may take βn = δ2βn−1

δ1
.

By induction, there exist sequences (αn)n∈N, (βn)n∈N, satisfying the
hypothesis of lemma 1 part 6, so Sums satisfies weak independece.

C.8 Proof of theorem 2

Proof. Let N1 be the network shown in figure 4.4, and N2 be the network
shown in figure 4.5. With G = N1, G is a connected component of both
networks. We have already shown in the proof of theorem 1 that t∗N1

(A) =
1 and t∗N1

(B) = t∗N1
(C) = 1

2
, so in particular A is ranked strictly above B

in N1. To prove Sums does not satisfy independence, we will show that
A and B are in fact ranked equally in N2; in particular, we shall have
A vIsums

N2
B but A 6vIsums

N1
B.

As before, write an for tnN2
(A) and similar for the other nodes. We

claim that, for n > 1:

an =
2

3n−1
, bn = cn =

1

3n−1
, sn = tn = un = 1

dn = en =
1

3n−1
, vn = wn = xn = 1

The base case for induction is n = 2. We have

â2 = d1 + e1 = 1, b̂2 = d1 =
1

2
, ĉ2 = e1 =

1

2
,
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ŝ2 = t̂2 = û2 = v1 + w1 + x1 =
3

2

d̂2 = â2 + b̂2 =
3

2
, ê2 = â2 + ĉ2 =

3

2

v̂2 = ŵ2 = x̂2 = ŝ2 + t̂2 + û2 =
9

2

The maximum trust score is 3
2

and the maximum belief score is 9
2
, so

a2 =
2

3
, b2 =

1

3
, c2 =

1

3
, s2 = 1, t2 = 1, u2 = 1

d2 =
1

3
, e2 =

1

3
, v2 = w2 = x2 = 1

Thus the claim holds for n = 2. Now suppose that the claim holds for the
(n− 1)-th iteration. We have

ân = dn−1 + en−1 =
2

3n−2
, b̂n = dn−1 =

1

3n−2
, ĉn = en−1 =

1

3n−2

ŝn = t̂n = ûn = vn−1 + wn−1 + xn−1 = 3

d̂n = ân + b̂n =
3

3n−2
, ên = ân + ĉn =

3

3n−2

v̂n = ŵn = x̂n = 9

The maximum trust and belief scores are 3 and 9 respectively, so we get

an =
2

3n−2
· 1
3
=

2

3n−1
, bn =

1

3n−2
· 1
3
=

1

3n−1
, cn =

1

3n−2
· 1
3
=

1

3n−1
,

sn = tn = un = 1

dn =
3

3n−2
· 1
9
=

1

3n−1
, en =

3

3n−2
· 1
9
=

1

3n−1
,

vn = wn = xn = 1

as required.
Finally, this means

t∗N2
(A) = lim

n→∞

2

3N−1
= 0

t∗N2
(B) = lim

n→∞

1

3N−1
= 0

and A 'Isums
N2

B, which completes the proof.
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