Truth-Tracking with Non-Expert Information Sources

Joe Singleton and Richard Booth singletonj1@cardiff.ac.uk

- Problem: what can be learned from non-expert information sources?
- We aim to learn both:
 - the true facts of the world
 - the true level of expertise of the sources
- We adapt the learning framework from recent work combining formal learning theory, belief revision and epistemic logic
- Main results:
 - description of what can be learned
 - characterisation of truth-tracking learning methods

Logical framework for expertise

Basic framework

- \mathcal{P} : finite set of propositional variables (e.g. *p*, *q*, ...)
- \cdot \mathcal{S} : finite set of sources (e.g. i, j, ...)
- C: finite set of cases (e.g. c, d, ...)
- We model expertise with partitions of states
 - Sources cannot distinguish states in the same cell
- A world is a pair $W = ({\Pi_i}_{i \in \mathcal{S}}, {v_c}_{c \in \mathcal{C}})$, where
 - + Each Π_i is a partition of the set of propositional valuations
 - Each v_c is a valuation

Example

• *i* has expertise on φ if *i* can always determine the correct value of φ : $W \models E_i \varphi \iff (u \in \text{mods}(\varphi) \implies \prod_i [u] \subseteq \text{mods}(\varphi))$

+ φ states always distinguishable from $\neg\varphi$ states

• *i* has expertise on φ if *i* can always determine the correct value of φ : $W \models \mathsf{E}_i \varphi \iff (u \in \mathrm{mods}(\varphi) \implies \prod_i [u] \subseteq \mathrm{mods}(\varphi))$

+ φ states always distinguishable from $\neg\varphi$ states

• *i* has expertise on φ if *i* can always determine the correct value of φ : $W \models E_i \varphi \iff (u \in \text{mods}(\varphi) \implies \prod_i [u] \subseteq \text{mods}(\varphi))$

+ φ states always distinguishable from $\neg \varphi$ states

• *i* has expertise on φ if *i* can always determine the correct value of φ : $W \models E_i \varphi \iff (u \in \text{mods}(\varphi) \implies \prod_i [u] \subseteq \text{mods}(\varphi))$

+ φ states always distinguishable from $\neg \varphi$ states

• *i* has expertise on φ if *i* can always determine the correct value of φ : $W \models \mathsf{E}_i \varphi \iff (u \in \mathrm{mods}(\varphi) \implies \prod_i [u] \subseteq \mathrm{mods}(\varphi))$

+ φ states always distinguishable from $\neg \varphi$ states

 $\cdot \varphi$ is sound for *i* if φ is true up to lack of expertise of *i*

$$W, c \models S_i \varphi \iff \Pi_i [v_c] \cap \operatorname{mods}(\varphi) \neq \emptyset$$

+ true state indistinguishable from some arphi state

• *i* has expertise on φ if *i* can always determine the correct value of φ : $W \models \mathsf{E}_i \varphi \iff (u \in \mathrm{mods}(\varphi) \implies \prod_i [u] \subseteq \mathrm{mods}(\varphi))$

+ φ states always distinguishable from $\neg \varphi$ states

 $\cdot \varphi$ is sound for *i* if φ is true up to lack of expertise of *i*

$$W, c \models S_i \varphi \iff \Pi_i [v_c] \cap \operatorname{mods}(\varphi) \neq \emptyset$$

+ true state indistinguishable from some arphi state

• *i* has expertise on φ if *i* can always determine the correct value of φ : $W \models \mathsf{E}_i \varphi \iff (u \in \mathrm{mods}(\varphi) \implies \prod_i [u] \subseteq \mathrm{mods}(\varphi))$

+ φ states always distinguishable from $\neg \varphi$ states

 $\cdot \varphi$ is sound for *i* if φ is true up to lack of expertise of *i*

$$W, c \models S_i \varphi \iff \prod_i [v_c] \cap \operatorname{mods}(\varphi) \neq \emptyset$$

+ true state indistinguishable from some arphi state

Learning and truth-tracking

Reports and methods

- We receive **reports** of the form $\langle i, c, \varphi \rangle$
 - "source i reports φ in case c"
- A learning method L maps a finite sequence σ to a conjecture

 $L(\sigma)\subseteq \mathcal{W}$, where \mathcal{W} is the set of all worlds

Example

$$L(\sigma) = \{ W \mid \forall \langle i, c, \varphi \rangle \in \sigma, W, c \models S_i \varphi \}$$

- We assume sources report all they consider possible
 - All reports are **sound**: only false due to lack of expertise
 - All sound reports **eventually appear**

- We assume sources report all they consider possible
 - All reports are **sound**: only false due to lack of expertise
 - All sound reports eventually appear
- Warning: Strong assumptions! Sources are always honest, and do not distinguish soundness with beliefs or knowledge

Streams (cont'd)

• An infinite sequence of reports ho is a stream for a world W if

$$\langle i, c, \varphi \rangle \in \rho \iff W, c \models S_i \varphi$$

- \cdot We want to design methods *L* which learn *W* when fed a stream ho
- Finding W exactly is too much to ask
- A question *Q* is a partition of $\mathcal W$
 - $Q_{\varphi,c}$: does φ hold in case c?

- \cdot We want to design methods *L* which learn *W* when fed a stream ho
- Finding W exactly is too much to ask
- A question *Q* is a partition of $\mathcal W$
 - $Q_{\varphi,c}$: does φ hold in case c?
 - Qval: what are the correct valuations? (ignoring partitions)

- \cdot We want to design methods *L* which learn *W* when fed a stream ho
- Finding W exactly is too much to ask
- A question *Q* is a partition of $\mathcal W$
 - $Q_{\varphi,c}$: does φ hold in case c?
 - Q_{val}: what are the correct valuations? (ignoring partitions)
 - $\cdot \ \, {\it Q}_{\perp} = \{\{W\} \mid W \in \mathcal{W}\}:$ what is the actual world?

- \cdot We want to design methods *L* which learn *W* when fed a stream ho
- Finding W exactly is too much to ask
- \cdot A question *Q* is a partition of $\mathcal W$
 - $Q_{\varphi,c}$: does φ hold in case c?
 - Q_{val}: what are the correct valuations? (ignoring partitions)
 - · $Q_{\perp} = \{\{W\} \mid W \in \mathcal{W}\}$: what is the actual world?
 - *Q*[*W*] is the **correct answer** at *W*

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

• L solves Q if given any stream, L eventually finds the correct answer

 $\forall W, \forall \rho \text{ a stream for } W, \exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

What can be learned?

Solvable questions

- Which questions are solvable?
- It turns out there is a question Q* which is the unique hardest solvable question

$$W \sim^* W' \iff \forall i \in \mathcal{S}, c \in \mathcal{C}, \Pi_i^W[v_c^W] = \Pi_i^{W'}[v_c^{W'}]$$

- Equivalently, W and W' have exactly the same streams
- $Q_{arphi, c}$ is only solvable when arphi is a tautology or contradiction ightarrow
- \cdot $Q_{\rm val}, Q_{\perp}$ not solvable imes
- **Problem:** if source have no expertise at all, *all* reports are sound. True valuations don't matter!

Solvable questions (cont'd)

• Solution: investigate what $Q^*[W]$ tells us about W

- A property of W is learnable if all W' ∈ Q*[W] share the same property
 - Any method solving Q^* eventually finds it

What can be learned?

Theorem

The true c-valuation is learnable at W iff there is a set Γ st

- 1. W, $c \models \Gamma$
- 2. $\operatorname{Cn}\left(\Gamma\right)$ is a maximally consistent set
- 3. For all $\varphi \in \Gamma$, there is $i \in S$ such that $W \models E_i \varphi$

• Similar result for partitions (omitted)

Truth-tracking methods

A characterisation of truth-tracking

- \cdot We have so far only looked solvable questions
- Which methods actually solve them?
- L is truth-tracking if it solves all solvable questions
 - Equivalently, *L* solves *Q**
- We characterise truth-tracking axiomatically, given three basic properties:
 - Equivalence: if $\sigma \equiv \delta$ then $L(\sigma) = L(\delta)$
 - Repetition: $L(\sigma \cdots \sigma) = L(\sigma)$
 - Soundness: if $W \in L(\sigma)$ then $W, c \models S_i \varphi$ for all $\langle i, c, \varphi \rangle \in \sigma$

A characterisation of truth-tracking (cont'd)

• Let T_{σ} be the set of worlds W such that, for all (i, c, φ) :

$$\mathsf{W},\mathsf{c}\models\mathsf{S}_{\mathsf{i}}\varphi\iff \exists\psi\equiv\varphi\;\mathsf{s.t}\;\langle\mathsf{i},\mathsf{c},\psi\rangle\in\sigma$$

- \cdot i.e. σ contains all sound reports, up to logical equivalence
- Write $U, c \models \varphi$ iff $W, c \models \varphi$ for all $W \in U$
- Credulity: if $T_{\sigma}, c \not\models S_i \varphi$ then $L(\sigma), c \models \neg S_i \varphi$

Theorem

For a method L satisfying Equivalence, Repetition and Soundness,

Truth-tracking \iff Credulity

Credulity

- Credulity: if $T_{\sigma}, c \not\models S_i \varphi$ then $L(\sigma), c \models \neg S_i \varphi$
- More expertise means fewer sound reports
- Credulity is a principle of maximal trust
 - Whenever consistent with ${\cal T}_{\sigma},$ we should trust i to have expertise to rule out φ
 - Since all sound reports eventually received, mistaken trust can be retracted
- **Consequence:** truth-tracking is not possible deductively; **defeasible reasoning** is required
- Stronger property in terms of expertise directly: if $T_{\sigma} \not\models \neg E_i \varphi$ then $L(\sigma) \models E_i \varphi$

Conclusion

Summary and future work

\cdot Summary:

- Developed a logical framework to reason about expertise and sound reports
- Expressed a learning problem in this setting
- · Characterised conditions under which information can be learned
- Axiomatically characterised truth-tracking learning methods
- · Future work:
 - Assumptions on streams are very strong! Can these be lifted?
 - Everything is finite. What results carry over to the infinite case?
 - Bridge with probabilistic reasoning?

Appendix: An example method

- Intuition: express credulity with a prior plausibility ordering over worlds
- Conjecture the maximally plausible worlds consistent with soundness statements
- E.g. using the number of partition cells as a measure of expertise:

$$L(\sigma) = \operatorname*{argmax}_{W \in X_{\sigma}} \sum_{i \in \mathcal{S}} |\Pi_{i}^{W}|$$

where $X_{\sigma} = \{ W \mid \forall \langle i, c, \varphi \rangle \in \sigma, W, c \models S_i \varphi \}$

• This method is truth-tracking!