Who's the Expert? On Multi-source Belief Change

Joe Singleton and Richard Booth singletonj1@cardiff.ac.uk

- **Problem:** suppose we receive conflicting reports from multiple non-expert information sources
 - What should we believe?
 - Who should we trust?
- We develop a logical framework to reason about expertise of multiple sources
- A **belief change** problem is expressed in this framework
 - Extends AGM revision
 - · Allows us to explore how belief and trust interact
- We put forward several **postulates** and families of **change operators**

Motivating example

Motivating example

- + Patients Alice and Bob are checked for condition p
- Blood test confirms Alice does have p

 $\cdot\,$ Assuming the test is reliable, we can revise beliefs with AGM revision

- Patients Alice and Bob are checked for condition p
- Blood test confirms Alice does have p
 - $\cdot\,$ Assuming the test is reliable, we can revise beliefs with AGM revision
- Dr. X: "Bob has *p*"
- Dr. Y: "Bob does not have p"
 - Need to use **non-prioritised** revision: drop the Success postulate

(**[**]. Alice. **(**)

Motivating example

- · Patients Alice and Bob are checked for condition p
- Blood test confirms Alice does have p
 - $\cdot\,$ Assuming the test is reliable, we can revise beliefs with AGM revision
- Dr. X: "Bob has *p*"
- Dr. Y: "Bob does not have p"
 - Need to use **non-prioritised** revision: drop the Success postulate
- It emerges that earlier, X said Alice did *not* have *p*
 - There is now reason to distrust X on diagnosing p
 - \cdot We need to revise beliefs about X's expertise and Bob's condition

Motivating example

- $\cdot\,$ Patients Alice and Bob are checked for condition p
- Blood test confirms Alice does have p
 - Assuming the test is reliable, we can revise beliefs with AGM revision
- Dr. X: "Bob has *p*"
- Dr. Y: "Bob does not have p"
 - Need to use **non-prioritised** revision: drop the Success postulate
- It emerges that earlier, X said Alice did *not* have *p*
 - There is now reason to **distrust** X on diagnosing p
 - We need to revise beliefs about X's expertise and Bob's condition
- Our questions:
 - How should the revision be performed?
 - Can trust and belief aspects be unified?

(🙎 . Bob. 🗙)

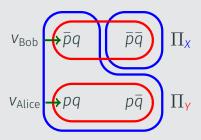
Logical framework for expertise

- + \mathcal{S} : finite set of information sources (e.g. test results, X, Y, ...)
- \cdot A distinguished source $* \in \mathcal{S}$ is completely reliable (e.g. test results)
- \mathcal{P} : finite set of propositional variables (e.g. p, ...)
- \mathcal{L} : extension of the propositional language \mathcal{L}_0 :
 - $E_i(\varphi)$: source *i* has expertise on φ
 - + In any situation, i is able to determine the correct value of φ
 - $S_i(\varphi)$: the formula φ is **sound** for *i* to report
 - $\cdot \hspace{0.1 in} \varphi$ is true up to the expertise of i
 - + i does not know φ is false

Semantics

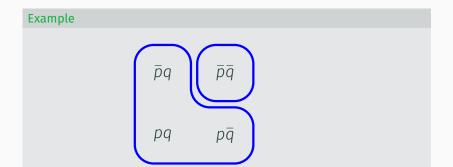
- $\cdot \ \mathcal{C}$: finite set of cases (e.g. Alice, Bob)
- + $\mathcal{V}:$ propositional valuations over \mathcal{P}
- We model expertise of sources via partitions
 - States in the same cell are indistinguishable
- A world is a pair $W = \langle \{ \mathsf{v}_c \}_{c \in \mathcal{C}}, \{ \Pi_i \}_{i \in \mathcal{S}} \rangle$
 - Each v_c is a valuation
 - Each Π_i is a partition of \mathcal{V} , s.t. $\Pi_* = \{\{v\} \mid v \in \mathcal{V}\}$

Example



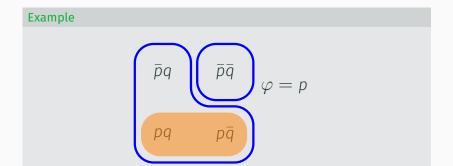
- We evaluate formulas with respect to a world W and a case c
- *i* has expertise on φ if *i* can always determine the correct value of φ : $W, c \models E_i(\varphi) \iff (u \in \text{mod}_0 \varphi \implies \prod_i [u] \subseteq \text{mod}_0 \varphi)$

+ φ states always distinguishable from $\neg\varphi$ states



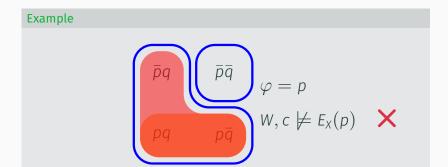
- We evaluate formulas with respect to a world W and a case c
- *i* has expertise on φ if *i* can always determine the correct value of φ : $W, c \models E_i(\varphi) \iff (u \in \text{mod}_0 \varphi \implies \prod_i [u] \subseteq \text{mod}_0 \varphi)$

+ φ states always distinguishable from $\neg\varphi$ states



- We evaluate formulas with respect to a world W and a case c
- *i* has expertise on φ if *i* can always determine the correct value of φ : $W, c \models E_i(\varphi) \iff (u \in \text{mod}_0 \varphi \implies \prod_i [u] \subseteq \text{mod}_0 \varphi)$

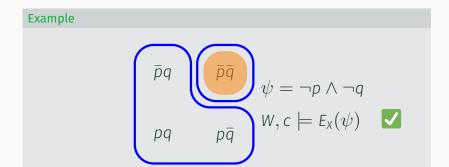
+ φ states always distinguishable from $\neg\varphi$ states



8

- We evaluate formulas with respect to a world W and a case c
- *i* has expertise on φ if *i* can always determine the correct value of φ : $W, c \models E_i(\varphi) \iff (u \in \text{mod}_0 \varphi \implies \prod_i [u] \subseteq \text{mod}_0 \varphi)$

+ φ states always distinguishable from $\neg\varphi$ states



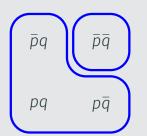
8

- We evaluate formulas with respect to a world W and a case c
- *i* has expertise on φ if *i* can always determine the correct value of φ : $W, c \models E_i(\varphi) \iff (u \in \text{mod}_0 \varphi \implies \prod_i [u] \subseteq \text{mod}_0 \varphi)$
 - + φ states always distinguishable from $\neg\varphi$ states
- + φ is sound for *i* if φ is true up to lack of expertise of *i*

$$W, c \models S_i(\varphi) \iff \Pi_i[v_c] \cap \operatorname{mod}_0 \varphi \neq \emptyset$$

+ true state indistinguishable from some arphi state

Example



- $\cdot\,$ We evaluate formulas with respect to a world W and a case c
- *i* has expertise on φ if *i* can always determine the correct value of φ : $W, c \models E_i(\varphi) \iff (u \in \text{mod}_0 \varphi \implies \prod_i [u] \subseteq \text{mod}_0 \varphi)$
 - + φ states always distinguishable from $\neg\varphi$ states
- + φ is sound for *i* if φ is true up to lack of expertise of *i*

$$W, c \models S_i(\varphi) \iff \Pi_i[v_c] \cap \operatorname{mod}_0 \varphi \neq \emptyset$$

+ true state indistinguishable from some arphi state

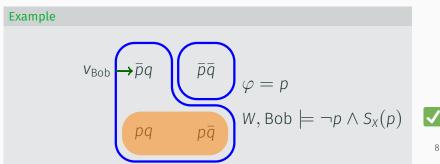
Example

$$v_{\text{Bob}} \xrightarrow{\overline{p}q} \overline{p}\overline{q}$$
$$\overline{p}\overline{q} \qquad \varphi = p$$
$$pq \qquad p\overline{q}$$

- We evaluate formulas with respect to a world W and a case c
- *i* has expertise on φ if *i* can always determine the correct value of φ : $W, c \models E_i(\varphi) \iff (u \in \text{mod}_0 \varphi \implies \prod_i [u] \subseteq \text{mod}_0 \varphi)$
 - + φ states always distinguishable from $\neg\varphi$ states
- + φ is sound for *i* if φ is true up to lack of expertise of *i*

$$W, c \models S_i(\varphi) \iff \Pi_i[v_c] \cap \operatorname{mod}_0 \varphi \neq \emptyset$$

+ true state indistinguishable from some arphi state



• Symmetric expertise:

$$E_i(\varphi) \leftrightarrow E_i(\neg \varphi)$$

• Closure under conjunctions:

$$E_i(\varphi) \wedge E_i(\psi) \rightarrow E_i(\varphi \wedge \psi)$$

• Expertise and soundness interaction:

 $E_i(\varphi) \wedge S_i(\varphi) \rightarrow \varphi$

• Reliable source properties:

 $E_*(\varphi)$ $S_*(\varphi) \leftrightarrow \varphi$

The belief change problem

The belief change problem

- Input: a finite sequence of reports σ , where each report is a triple $\langle i, c, \varphi \rangle$, with $\varphi \not\equiv \bot$
- **Output:** a pair $\langle B^{\sigma}, K^{\sigma} \rangle$, where
 - $\cdot \ B^{\sigma} = \{B^{\sigma}_{c}\}_{c \in \mathcal{C}} \text{ is a collection of belief sets } B^{\sigma}_{c} \subseteq \mathcal{L}$
 - $\cdot \ \mathbf{K}^{\sigma} = \{\mathbf{K}^{\sigma}_{c}\}_{c \in \mathcal{C}} \text{ is a collection of knowledge sets } \mathbf{K}^{\sigma}_{c} \subseteq \mathcal{L}$
- Output is expressed in the extended language: describes both beliefs about the state of affairs in each case, *and* the expertise of the sources

The belief change problem

- Input: a finite sequence of reports σ , where each report is a triple $\langle i, c, \varphi \rangle$, with $\varphi \not\equiv \bot$
- **Output:** a pair $\langle B^{\sigma}, K^{\sigma} \rangle$, where
 - $\cdot B^{\sigma} = \{B_c^{\sigma}\}_{c \in \mathcal{C}}$ is a collection of **belief sets** $B_c^{\sigma} \subseteq \mathcal{L}$
 - $\cdot \ \textit{K}^{\sigma} = \{\textit{K}^{\sigma}_{\textit{c}}\}_{\textit{c} \in \mathcal{C}} \text{ is a collection of } \textit{knowledge sets } \textit{K}^{\sigma}_{\textit{c}} \subseteq \mathcal{L}$
- Output is expressed in the extended language: describes both beliefs about the state of affairs in each case, *and* the expertise of the sources
- Belief sets represent the **defeasible** part of the output: beliefs can be retracted; e.g.
 - $E_X(p) \in B_c^{\langle *, Alice, p \rangle \cdot \langle X, Bob, p \rangle}$
 - $E_{x}(p) \notin B_{c}^{\langle *, Alice, p \rangle \cdot \langle X, Bob, p \rangle \cdot \langle Y, Bob, \neg p \rangle}$
 - $\cdot \neg F_{X}(p) \in B_{c}^{\langle *, Alice, p \rangle \cdot \langle X, Bob, p \rangle \cdot \langle Y, Bob, \neg p \rangle \cdot \langle X, Alice, \neg p \rangle}$

- We introduce some basic postulates, including:
 - \cdot Closure: ${\it B}^{\sigma}={
 m Cn}({\it B}^{\sigma})$ and ${\it K}^{\sigma}={
 m Cn}({\it K}^{\sigma})$
 - Equivalence: If $\varphi \equiv \psi$ then $B^{\sigma \cdot \langle i, c, \varphi \rangle} = B^{\sigma \cdot \langle i, c, \psi \rangle}$ and $K^{\sigma \cdot \langle i, c, \varphi \rangle} = K^{\sigma \cdot \langle i, c, \psi \rangle}$
 - Containment: $K_c^{\sigma} \subseteq B_c^{\sigma}$
 - K-conjunction: $K^{\sigma \cdot \rho} = \operatorname{Cn}(K^{\sigma} \sqcup K^{\rho})$
 - Knowledge grows monotonically
 - Soundness: If $\langle i, c, \varphi \rangle \in \sigma$, then $S_i(\varphi) \in K_c^{\sigma}$
 - All reports are sound. Sources are honest

- We introduce some basic postulates, including:
 - \cdot Closure: ${\it B}^{\sigma}={
 m Cn}({\it B}^{\sigma})$ and ${\it K}^{\sigma}={
 m Cn}({\it K}^{\sigma})$
 - Equivalence: If $\varphi \equiv \psi$ then $B^{\sigma \cdot \langle i, c, \varphi \rangle} = B^{\sigma \cdot \langle i, c, \psi \rangle}$ and $K^{\sigma \cdot \langle i, c, \varphi \rangle} = K^{\sigma \cdot \langle i, c, \psi \rangle}$
 - Containment: $K_c^{\sigma} \subseteq B_c^{\sigma}$
 - K-conjunction: $K^{\sigma \cdot \rho} = \operatorname{Cn}(K^{\sigma} \sqcup K^{\rho})$
 - Knowledge grows monotonically
 - · Soundness: If $\langle i,c,\varphi\rangle\in\sigma$, then $\mathsf{S}_i(\varphi)\in\mathsf{K}^\sigma_c$
 - All reports are sound. Sources are **honest**
- Immediate consequences:
 - Success holds for the reliable source *:
 - $\cdot \;\;$ If $\langle *, c, \varphi \rangle \in \sigma$, then $\varphi \in \mathit{K}^\sigma_{c}$

- We introduce some basic postulates, including:
 - \cdot Closure: ${\it B}^{\sigma}={
 m Cn}({\it B}^{\sigma})$ and ${\it K}^{\sigma}={
 m Cn}({\it K}^{\sigma})$
 - Equivalence: If $\varphi \equiv \psi$ then $B^{\sigma \cdot \langle i, c, \varphi \rangle} = B^{\sigma \cdot \langle i, c, \psi \rangle}$ and $K^{\sigma \cdot \langle i, c, \varphi \rangle} = K^{\sigma \cdot \langle i, c, \psi \rangle}$
 - Containment: $K_c^{\sigma} \subseteq B_c^{\sigma}$
 - K-conjunction: $K^{\sigma \cdot \rho} = \operatorname{Cn}(K^{\sigma} \sqcup K^{\rho})$
 - Knowledge grows monotonically
 - · Soundness: If $\langle i,c,\varphi\rangle\in\sigma$, then $\mathsf{S}_i(\varphi)\in\mathsf{K}^\sigma_c$
 - All reports are sound. Sources are **honest**
- Immediate consequences:
 - Success holds for the reliable source *:

 $\cdot \ \, \text{If} \, \langle *, c, \varphi \rangle \in \sigma, \, \text{then} \, \varphi \in \mathit{K}^\sigma_c$

- We distrust sources making reports known to be false:
 - If $\varphi \in K_c^{\sigma}$, then $\neg E_i(\varphi) \in K_c^{\sigma \cdot \langle i, c, \neg \varphi \rangle}$

- We introduce some basic postulates, including:
 - \cdot Closure: ${\it B}^{\sigma}={
 m Cn}({\it B}^{\sigma})$ and ${\it K}^{\sigma}={
 m Cn}({\it K}^{\sigma})$
 - Equivalence: If $\varphi \equiv \psi$ then $B^{\sigma \cdot \langle i, c, \varphi \rangle} = B^{\sigma \cdot \langle i, c, \psi \rangle}$ and $K^{\sigma \cdot \langle i, c, \varphi \rangle} = K^{\sigma \cdot \langle i, c, \psi \rangle}$
 - Containment: $K_c^{\sigma} \subseteq B_c^{\sigma}$
 - K-conjunction: $K^{\sigma \cdot \rho} = \operatorname{Cn}(K^{\sigma} \sqcup K^{\rho})$
 - Knowledge grows monotonically
 - · Soundness: If $\langle i,c,\varphi\rangle\in\sigma$, then $\mathsf{S}_i(\varphi)\in\mathsf{K}^\sigma_c$
 - All reports are sound. Sources are **honest**
- Immediate consequences:
 - Success holds for the reliable source *:

 $\cdot \ \, \text{If} \, \langle *, c, \varphi \rangle \in \sigma, \text{then} \, \varphi \in \mathit{K}^{\sigma}_{c}$

• We distrust sources making reports known to be false:

• If $\varphi \in K_c^{\sigma}$, then $\neg E_i(\varphi) \in K_c^{\sigma \cdot \langle i, c, \neg \varphi \rangle}$

- We believe reports from trusted sources:
 - $\cdot \ \, \text{If} \, \langle i,c,\varphi\rangle \in \sigma \text{ and } E_i(\varphi) \in \textit{B}_{c}^{\sigma} \text{ then } \varphi \in \textit{B}_{c}^{\sigma}$

Belief change operators

Conditioning operators

- Idea: select a set of possible worlds \mathcal{X}_{σ} , and use a plausibility ordering to choose the most plausible worlds
- These sets induce knowledge and beliefs, respectively
- Given a mapping $\sigma \mapsto \mathcal{X}_{\sigma}$ and total preorder \leq on worlds, the **conditioning operator** is defined by

$$\begin{split} \kappa^{\sigma} &= \operatorname{Th}(\mathcal{X}_{\sigma}) \\ B^{\sigma} &= \operatorname{Th}(\min_{\leq} \mathcal{X}_{\sigma}) \end{split}$$

Example

Set $\mathcal{X}_{\sigma} = \{W \mid \forall \langle i, c, \varphi \rangle \in \sigma, W, c \models S_i(\varphi)\}$, and $W \leq W'$ iff $r(W) \leq r(W')$, where

$$r(W) = -\sum_{i \in \mathcal{S}} |\{p \in \mathcal{P} \mid W, c_0 \models E_i(p)\}|$$

That is: we only know soundness statements, and aim to trust sources on as many propositional variables as possible.

Conditioning operators: example

- $\cdot \ \sigma_{1} = \langle *, \textit{Alice}, p \rangle \cdot \langle \textit{X}, \textit{Bob}, p \rangle \cdot \langle \textit{Y}, \textit{Bob}, \neg p \rangle$
- We have:

$$\begin{split} B_{Alice}^{\sigma_1} \cap \mathcal{L}_0 &= \operatorname{Cn}_0(p) \\ B_{Bob}^{\sigma_1} \cap \mathcal{L}_0 &= \operatorname{Cn}_0(\emptyset) \\ E_i(p), \neg E_i(p) \notin B_c^{\sigma_1}, \text{ for both } i \in \{X, Y\} \\ (p \to E_X(p)) \wedge (\neg p \to E_Y(p)) \in B_{Bob}^{\sigma_1} \end{split}$$

Conditioning operators: example

- $\cdot \ \sigma_1 = \langle *, \textit{Alice}, p \rangle \cdot \langle X, \textit{Bob}, p \rangle \cdot \langle Y, \textit{Bob}, \neg p \rangle$
- We have:

$$B_{Alice}^{\sigma_1} \cap \mathcal{L}_0 = \operatorname{Cn}_0(p)$$

$$B_{Bob}^{\sigma_1} \cap \mathcal{L}_0 = \operatorname{Cn}_0(\emptyset)$$

$$E_i(p), \neg E_i(p) \notin B_c^{\sigma_1}, \text{ for both } i \in \{X, Y\}$$

$$(p \to E_X(p)) \land (\neg p \to E_Y(p)) \in B_{Bob}^{\sigma_1}$$

$$\cdot \ \sigma_{2} = \sigma_{1} \cdot \langle X, Alice, \neg p \rangle$$

$$B_{Bob}^{\sigma_{2}} \cap \mathcal{L}_{0} = \operatorname{Cn}_{0}(\neg p$$

$$\neg E_{X}(p) \wedge E_{Y}(p) \in B_{c}^{\sigma_{2}}$$

• Note: a new report from Dr. X on Alice affects beliefs about Bob and the expertise of Drs. X and Y!

A characterisation of conditioning operators

- Conditioning is characterised by the following postulates:
 - Duplicate-removal: If $\rho_1 = \sigma \cdot \langle i, c, \varphi \rangle$ and $\rho_2 = \rho_1 \cdot \langle i, c, \varphi \rangle$ then $B^{\rho_1} = B^{\rho_2}$ and $K^{\rho_1} = K^{\rho_2}$
 - Conditional-consistency: If K^{σ} is consistent then so is B^{σ}
 - Inclusion-vacuity: $B^{\sigma \cdot \rho} \sqsubseteq \operatorname{Cn}(B^{\sigma} \sqcup K^{\rho})$, with equality if $B^{\sigma} \sqcup K^{\rho}$ is consistent
 - Acyc: If $\sigma_0, \ldots, \sigma_n$ are such that $K^{\sigma_j} \sqcup B^{\sigma_{j+1}}$ is consistent for all $0 \leq j < n$ and $K^{\sigma_n} \sqcup B^{\sigma_0}$ is consistent, then $K^{\sigma_0} \sqcup B^{\sigma_n}$ is consistent

Theorem

Suppose an operator satisfies the basic postulates. Then it is an elementary conditioning operator if and only if it satisfies Duplicate-removal, Conditional-consistency, Inclusion-vacuity and Acyc.

(elementary $\iff \mathcal{X}_{\sigma} = \operatorname{mod}(G)$ for some G, and similarly for $\min_{\leq} \mathcal{X}_{\sigma}$)

One-step revision

- The reliable source * allows us to extend AGM revision
- Notation: $[B_c^{\sigma}] = B_c^{\sigma} \cap \mathcal{L}_0$
 - AGM-*: For any σ and $c \in C$ there is an AGM operator \star for $[B_c^{\sigma}]$ such that $\left[B_c^{\sigma \cdot \langle *, c, \varphi \rangle}\right] = \left[B_c^{\sigma}\right] \star \varphi$ whenever $\neg \varphi \notin K_c^{\sigma}$
- That is, a new report from * for case c is just AGM revision on (propositional part of) the *c*-th belief set
- Satisfied by our example operator

Weakenings of Success

- \cdot We have Success (and other AGM postulates) for the reliable source *
- What about unreliable sources? We offer two weaker formulations:
 - Cond-success: If $E_i(\varphi) \in B_c^{\sigma}$ and $\neg \varphi \notin B_c^{\sigma}$, then $\varphi \in B_c^{\sigma \cdot \langle i, c, \varphi \rangle}$
 - Strong-cond-success: If $\neg(\varphi \land E_i(\varphi)) \notin B_c^{\sigma}$, then $\varphi \in B_c^{\sigma \cdot \langle i, c, \varphi \rangle}$

- $\cdot\,$ We have Success (and other AGM postulates) for the reliable source $*\,$
- What about unreliable sources? We offer two weaker formulations:
 - Cond-success: If $E_i(\varphi) \in B_c^{\sigma}$ and $\neg \varphi \notin B_c^{\sigma}$, then $\varphi \in B_c^{\sigma \cdot \langle i, c, \varphi \rangle}$
 - Strong-cond-success: If $\neg(\varphi \land E_i(\varphi)) \notin B_c^{\sigma}$, then $\varphi \in B_c^{\sigma \cdot \langle i, c, \varphi \rangle}$
- Our example satisfies Cond-success
- \cdot ...but not Strong-cond-success imes
- We have an **impossibility result**: basic conditioning operators with some additional reasonable properties *cannot* satisfy *Strong-cond-success*

- We overcome this impossibility result by introducing the new class of **score-based** operators:
- Idea: assign a plausibility score to each pair $(W, \langle i, c, \varphi \rangle)$
- We give an example score-based operator satisfying all the postulates

Conclusion

• Summary:

- Introduced a belief change problem to reason about reports from non-expert information sources
- Explored the connections between trust and belief
- Representation result for the class of conditioning operators
- · Future work:
 - · Computational issues
 - Graded or probabilistic expertise